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01 the GDR. He is author or coauthor of 75 sc entilic papers. 

I. Introduction 

The tremendous increase of interest in the chemistry 
and physics o f  solids and their  surfaces is connected 
w i t h  recent progress in advanced technologies. Elec- 
tronic devices, selective catalysts, and adsorhents, as 
well as materials designed t o  meet novel demands, are 
a t  the leading edge o f  these advances. It has become 
clear tha t  numerous impor tant  phenomena are due to 
deviations f rom the inf in i te periodic structure o f  ideal 
solids: doping and defects in semiconductors and other 
types o f  solids, local interactions in metal-semicon- 
ductor systems and metalksupport catalysts; structures 
in amorphous and glassy solids, format ion of surface 
complexes and surface reactions on irregularly distrib- 
uted sites; and, last but n o t  least, solid-state reactions. 

A prerequisite for an advance in this field was the 
development of highly sophisticated and powerful ex- 

'Dedicated to Rudolf Lhmdnlk on the occasion of his 60th birthday. 
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perimental techniques, in particular spectroscopic 
methods, for investigating solids and their surfaces on 
a molecular scale. Examples are high-resolution solid- 
state magic-angle spinning NMR spectroscopy1v2 and 
scanning tunnel microscopy (STM, Nobel prize 1986).3 
However, the results obtained have raised many ques- 
tions at  the atomic level that are a major challenge to 
theoreticians: Which atomic structures produce a given 
effect? How do local effects show up in bulk proper- 
ties? What is the geometry of a site of interest and 
what properties does it have? What is the nature of the 
bonds between the atoms involved and how large are 
the forces acting between them? These questions can 
be answered provided that methods are used that yield 
reliable total energies and, moreover, reliable energy 
changes for changed positions of the nuclei. In other 
words, the methods must yield reliable potentials for 
the motion of the nuclei. 

Quantum chemical ab initio  method^^-^ met such 
requirements. For molecules in the gas phase, ab initio 
calculations have become an alternative to experiments 
for determining accurately structures, vibrational fre- 
quencies, and electronic properties as well as intermo- 
lecular forces and molecular reacti~ities.*-~ It would be 
most valuable if bredictions of local structures and 
properties of active sites of solids could be made with 
similar accuracy and reliability, since they are fre- 
quently not, or not directly, accessible by experiments. 
What complicates the application of quantum chemical 
methods to solid-state problems is, on the molecular 
scale, the infinite dimension of solids. This complica- 
tion becomes particularly serious for ab initio tech- 
niques. 

One way to overcome the difficulties is to adopt finite 
models such as clusters of atoms or ions, real or hypo- 
thetical molecules, that can be treated by the same ab 
initio methods applied to molecules. This means to 
confine the explicit treatment to those atoms and in- 
teractions of significance for the effect under study but 
to neglect or to only approximately include influences 
of the environment by suitably chosen boundary con- 
ditions. Hence, this “molecular” approach is particu- 
larly suited to tackle local phenomena, e.g. to describe 
active sites of catalysts or impurity centers in semi- 
conductors, but it also helps to extend knowledge on 
structure and bonding of crystals and on their bulk 
properties.’O It is the subject of this paper. 

The molecular approach is alternative to the way 
solid-state physicists look at the problems (see, e.g., ref 
10 and 11). They start from the idea of an ideally 
periodic solid and exploit the translation symmetry of 
a crystal. Quantum chemical methods doing the same 
are named crystal orbital (CO) methods.12 They pro- 
vide the accurate limit for calculations on finite models 
and, hence, help to understand the approximations 
connected with the molecular approach. Unfortunately, 
CO methods use a language different from the language 
of molecular orbital (MO) theory well-known to chem- 
ists. Hoffmann,13 however, has recently offered a nice 
translation. There are two problems with CO calcula- 
tions. First, they are computationally much more de- 
manding than calculations on finite models. Second, 
local effects such as impurities or defects must be 
treated as quasi-periodic assuming rather large pseudo 
unit cells. 

The above requirements are met not only by con- 
ventional quantum chemical ab initio methods but also 
by the most recent variants of density functional 
methods.14J5 These “first-principle” methods share with 
ab initio methods the feature that they avoid empirical 
relationships or adjustable parameters, but they make 
different approximations (local density approximation) 
and, unlike the ab initio methods, their accuracy cannot 
be improved beyond the limits of this approximation. 
Nevertheless, they reached a level of sophistication 
allowing calculation of total energies for molecules1618 
and solids11J4-22 with sufficient accuracy to make 
structure predictions. Hence, density functional 
methods also solve the class of solid-state problems 
addressed in this paper. There are examples within 
both the “molecular” and the “physical” approach. 
Having no own experience with density functional 
methods, I do not look at them in the same detail as 
I look at ab initio methods, and I only try to assess their 
performance by comparing some results for molecules 
and solids with ab initio results. 

The exclusion of semiempirical methods from this 
review (except for a few remarks in section 1II.D) may 
be criticized. We owe to semiempirical methods much 
of our skill of selecting models. There is no space for 
a detailed description, and reference is made to previous 
 review^.^^-^^ Their undoubted success (see ref 13 for a 
recent example) is limited to the calculation of one- 
electron energies (ionization potentials, electron affin- 
ities, excitation energies), charge distributions, and 
electronic properties. However, the local structure and 
local interactions (i.e., nature and properties of the 
bonds involved) must be known to specify the geometry 
and the parameters entering a semiempirical calcula- 
tion. Structure information is obtained in an indirect 
way only, by calculating the properties of a defect, im- 
purity, or some other site and comparing the results for 
different models and geometries with observed param- 
eters. Similar remarks apply to the widely used S W-Xa 
methods27 as well as to semiempirical band structure 
calculations of solid-state p h y s i ~ s . ~ ~ , ~ ~ - ~ ~  

This review starts from the presumption that one 
would like to perform a quantum chemical calculation 
on a solid by ab initio methods. Section I1 gives a short 
survey of relevant approximations and, on the basis of 
knowledge for molecules, makes an attempt to convey 
to the reader what type of results and degree of accu- 
racy he may (or should not) expect from ab initio cal- 
culations. Section I11 explains why the physical ap- 
proach to solve the problem, the crystal orbital tech- 
nique, becomes computationally so complicated that it 
is presently not broadly applicable. In section IV rules 
are heuristically derived on how to select a good mo- 
lecular model or cluster model and how to keep 
boundary effects at  a minimum. Use is made of these 
rules to systematize different suggestions for 
“embedding” procedures. Sections V-VI1 give an ac- 
count of the achievements of ab initio calculations on 
cluster models and molecular models for different types 
of solids. 

I Z .  Prologue: Ab Initio Computational Methods 

Ab initio methods, also called nonempirical methods, 
provide a solution to the Schrodinger equation on the 
basis of well-defined approximations such as Born- 
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Oppenheimer separation, variational principle, and 
perturbation theory (see, e.g., ref 31) without any em- 
pirical data, relationships, or adjustable parameters. Ab 
initio does not necessarily mean accurate, but it is an 
important feature of ab initio methods that it is known 
how the approximations can be gradually lifted to ap- 
proach the accurate limit. 

A. Survey of Approximations 

The electronic properties of a molecular system and 
its energy ER are obtained as a solution of the electronic 
part of the Schrodinger equation for a configuration R 
of the nuclei: 

(11.1) 

The n-particle wave function \kR(r) describes the 
motion of the electrons in the field of the (fixed) nuclei. 
Due to the electron-electron interaction term in the 
Hamiltonian, this equation cannot be solved without 
large approximations. It is the aim of computational 
quantum chemistry to suggest approximate methods of 
solution and to investigate their range of applicability. 
Almost all procedures rely on the so-called Hartree- 
Fock (HF) or self-consistent field (SCF) approximation. 
It assumes that the motion of an electron within the 
molecular system depends only on the average potential 
of all electrons and it is also known as model of inde- 
pendent particles. The real motions of the electrons, 
however, as described by the exact wave function are 
“correlated”. The energy difference between the exact 
result and the Hartree-Fock approximation is called the 
correlation energy. Inclusion of electron correlation on 
a reasonable level is much more demanding than a SCF 
solution. Roughly speaking, for the same system the 
computational effort is at  least 1 order of magnitude 
larger (vide infra, 1I.C). 

The HF  approximation assumes that the n-particle 
wave function \k(r) can be written as an antisymme- 
trized product of one-electron functions qi(rl) (Slater 
determinant): 

%(r, R) \k&) = ER\k&) 

(11.2) 

One-electron functions are called orbitals. If one looks 
for the set of n orbitals that yields the lowest energy 
of a molecular system in the sense of the variational 
principle, one finds that they are determined by the 
equations 

F(r1) $i(rl) = Ei$i(rl) (11.3) 

called HF equations. The orbitals Gi(rl) are named 
molecular orbitals, and the Fock operator, F, is given 
by 

F(rd = h(rl) + d r l )  (11.4) 
The one-electron part h (rl) comprises the differential 
operator of the kinetic energy and the potential of the 
nuclei. The electron-electron interaction term, g(rl) ,  
takes the form of an effective one-electron operator and 
describes the mean potential created by the electrons 
of the system. I t  consists of two parts, Coulomb and 
exchange potential, respectively 

I Gl(rl) +z(ri) Gn(rl) 
9 ( r l ,  r2, ..., r,) = - I: ’ 

fi gl(r,)  +,(rn) 

and 

The multiplier 6,, arises from summation over the spin 
coordinates (which are suppressed in this paper wher- 
ever possible). It is 0 when the spin functions belonging 
to the orbitals $ and are different, and it equals 1 
when the same spin function is assigned to both + and 
&, j(rJ and k(r,) are integral operators that depend 
on the solutions $k of eq 11.3. Hence, the HF equations 
are integrodifferential equations that must be solved 
iteratively until the potential g (rl) is “self-consistent”. 
Their solution by numerical integration is feasible only 
for highly symmetric potentials. Besides atoms, nu- 
merical solutions have been achieved for diatomics only. 
Even the water molecule still poses a not yet sur- 
mounted barrier. Therefore, further approximations 
are necessary, and virtually all solutions for molecules 
are based on the so-called algebraic approximation. By 
expansion of molecular orbitals qi into a finite series of 
basis functions Xi(r) 

G i b i )  = X(ri)ci = (x l (r l ) ,  x h ) ,  ..., Xm(ri)) ( :”) (11.6) 

Cmi 

the integrodifferential equations in (11.3) are trans- 
formed into matrix equations (Roothaan equations)32 

FC = SCE (11.7) 
with the Fock and overlap matrices 

F (xlFx) S (xlx) (11.8) 

(We use brackets (I) as short-hand notation for inte- 
gration over the coordinates of an electron, rl.) The HF 
solutions are given as m column vectors ci of coefficients 
referring to a chosen basis set x: 

C = ( ~ 1 ,  cZ, ..., c,) (11.9) 
The one-electron density function, p(r ) ,  is represented 
for this basis set by the matrix 

Eij = E.6.. 1 V 

n 

k 
R = zckck’ (11.10) 

where the summation is over all orbitals lz occupied in 
the electronic state considered. The Fock matrix at- 
tains the form 

(11.11) 

G(R),, = CCR,,[(PJW) - ( ~ p l v c ) l  (11.12) 

The analytical form of the basis functions is chosen such 
that differentiation and integration can be easily done 
analytically. Boys33 opened the area of modern com- 
putational quantum chemistry when he suggested 
atom-centered Gaussian-type functions (GTF): 

Fpy = ( ~ l h v )  + GW,, 
with the two-electron part 

P S  
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g((Y, A, I!) = Na,lXAiYAiZAke-arA2 (11.1 3) 

(A refers to the atom, i + j + k = 0 for s-type functions, 
1 for p-type functions, ....) 

From the computational point of view the bottleneck 
is now the large number (millions for a small molecule, 
but billions for a typical case considered in this review) 
of integrals over the basis function that have to be- 
computed, stored, and reread in each iteration. 

1 
r12 

( C L V I W )  = Jx,,*(rd x v W  - x,*(~z) x , (~z)  d r l  drz 
(11.14) 

Formally, their number grows as m4 (in practice less). 
Hence, m should be as small as possible. One generally 
accepted way to achieve this is the use of fixed linear 
combinations of several GTF as basis functions in 
molecular calculations. 

Sauer 

(11.15) 

The coefficients of the “primitives” in these 
“contracted” GTF (CGTF) are transferred from calcu- 
lations on atoms. Moreover, much effort is directed (i) 
to reduce for a given expansion the number of integrals 
to be stored and (ii) to find for a given purpose an 
optimal expansion as short as possible. Most basis sets 
are derived in atomic calculations due in part to the 
chemists’ feeling that in molecules one can still identify 
slightly distorted atoms pointing to the historical root 
of the algebraic approximation, namely the LCAO ex- 
pansion (linear combination of atomic orbitals). 

Since selection of an appropriate basis set is critical 
for an ab initio study to be successful, a short account 
will be given of the classification and performance of 
basis sets. A basis set is called “minimal” (MB) if a 
single CGTF is employed for each type of atomic orbital 
occupied in the ground state of the respective atom. If 
more than one function is employed for each atomic 
orbital, the basis set is named “double r (DZ), “triple 
f“ (TZ), and so on. This nomenclature originates from 
the use of Slater-type orbitals (STO) having the radial 
dependence r-p as basis sets. A DZ basis set employs 
two different { exponents to describe, e.g., a 1s orbital. 
Consequently, minimal basis sets are also named sin- 
gle-{ (SZ). Since inner shells are little affected by or- 
dinary chemistry, effective basis sets use only one 
CGTF for the inner shell but two CGTF for the va- 
lence-shell orbitals. They are called split-valence (SV) 
or valence double-{ (VDZ) basis sets. A significant gain 
in flexibility is achieved by inclusion of polarization 
functions in the basis set. Polarization functions cor- 
respond to atomic orbitals with higher azimuthal 
quantum numbers than those corresponding to atomic 
orbitals occupied in the ground states of atoms. A 
typical case is the ‘‘double-{ plus polarization“ (DZP) 
set that includes d functions on first- and second-row 
atoms, e.g., on C or Si, and p functions on H (see, e.g., 
ref 34). Its composition, according to common notation, 
is [6,4, 1/4, 2, 1/2 ,  11 where the number of contracted 
s, p, d functions are given and specifications for atoms 
from different periods of the periodic table are made 
in decreasing order separated by a slanted stroke. 
Particularly widespread are the basis sets suggested by 
the Pople STO-3G (minimal), 3-21G and 4-31G 
(split-valence), 6-31G* and 6-31G** (split-valence 

augmented by polarization functions; the first star in- 
dicates a set of d functions on non-hydrogen atoms 
while the second star refers to a set of p functions on 
hydrogen atoms), and 6-311G** (single-l core, triple-{ 
valence and polarization functions on all atoms). The 
STO-3G(*) and 3-21G(*) sets have sets of d functions 
added to second-row (or higher) elements only. In 
notations like 3-21+G or 6-31++G** the first plus 
stands for an additional set of diffuse s and p functions 
on non-hydrogen atoms while the second plus refers to 
a diffuse s Gaussian on hydrogen. In the STO-3G set 
each STO of a minimal set is represented by three 
primitive GTF, while in the n-klG sets the CGTF of 
each core orbital consists of n primitives and the valence 
shell orbitals are split into one CGTF consisting of k 
primitives and a single set of GTF. The sp parts of the 
basis sets from the Pople group have the added con- 
straint that each s Gaussian shares with the come- 
sponding set of the three px, p , and pz Gaussians the 
same exponent (a,  = a ). Ti is  is called the “shell 
structure” and greatly reBuces the integral and gradient 
(vide infra) computation times at the expense of some 
loss in flexibility. 

A survey of basis sets available and specific comments 
on their selection for a particular problem can be found 
in reviews of Dunning and Hay,34 Ahlrichs and Taylor,% 
H ~ z i n a g a , ~ ~  and Davidson and Feller.37 

A substantial reduction of the number of two-electron 
integrals can be achieved, in particular for elements 
from higher periods, when in the process considered the 
core electrons can be assumed as being inert and re- 
placed by an effective core (EC) potential (sometimes 
also called “pseudopotential” or “model potential”; all 
three terms will be used as synonyms in this paper). As 
long as these EC potentials do not contain adjustable 
parameters and are derived in a nonempirical way, the 
methods are still “ab initio”, although they contain an 
additional approximation requiring testing. Note that 
EC potentials should be used together with basis sets 
specially adapted to them. Details can be found in 
previous r e v i e w ~ ~ ~ t ~ ~  in this journal, in particular in 
Appendix C of ref 38. 

To determine bond angles and distances is one of the 
main tasks of computational quantum chemistry. 
Powerful methods have been d e v e l ~ p e d ~ ~ ~ ~ ~  to locate 
minima on the energy hypersurface with respect to the 
nuclear coordinates of a molecule, which correspond to 
molecular equilibrium structures. These methods re- 
quire the repeated calculation of the first derivatives 
of the energy, ER = E ( X l ,  ..., X3N), with respect to the 
nuclear coordinates of the N nuclei chosen here as the 
full set of 3N Cartesian coordinates: 

In early days of computational quantum chemistry the 
gradient components, g,, had to be evaluated by nu- 
merical differentiation, i.e., as finite differences between 
energy values calculated for small displacements, A, of 
the nuclear coordinates from the reference structure, 
Xe, and the energy value of the reference structure: 
g,  = [ E ( X ,  = X L e  + A)  - E ( X ,  = X t e ) ] / A  (11.17) 

Starting with the work of Pulay, analytical formulas 
were derived for calculation of gradients and, subse- 
quently, also of higher derivatives of the energy (see 
reviews in ref 39,41, and 42 and the references therein). 

gi(X1, ..., X3N) = dE(X1, ..., X3N)/dX, (11.16) 
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d2E(X,, ..*, X3d 
dXidXj f i j  = 

TABLE 1. Typical Results for Molecular Geometries and Vibrational Frequencies 

correlation includedl SCF approximation 
MB SV/DZ DZP large basis sets ref 

bond distancesa** (+) 5 (-) 2 (-) 2 0.3-0.5 49c 

(11.18) 
x=x, 

bond angles’ 10 5 d  3 1 49c 
STO-3G 3-21G 6-31G* MP2/6-31G* ref 

distancesa (A-H/A-B)‘ 
A,B first-row atoms onlf 2.313.1 1.112.4 1.212.8 0.912.3 50, 51 
A,B up to second-row atomse 5.216.2 1.616.7 1.412.2 52, 53 
A,B UD to third- and fourth-row atomse 6.714.1 4.0110.4 54 

angiesa - 
first-row atoms only 
UD to second-row atoms 

3.1 
2.1 

2.1 
1.6 

1.4 
1.3 

1.4 50, 51 
52, 53 

MINI-1 3-21G 6-31G* MP2/6-31G* ref 
harmonic freq,f % 7.38 12h 11-13 8 55, 56 
harmonic freq? % 4.68 7.5h 8-11 5 56 

(I Mean absolute deviation (picometers, degrees) from experiment. *The sign in parentheses indicates a tendency to overestimate (+) or 
to underestimate (-) the bond distance. ‘Cf. ref 37. dLarger errors for lone-pair atoms. ‘The first entry refers to A-H bonds; the second 
entry, separated by a slanted stroke, to A-B bonds. fMean relative deviation from observed frequencies (percent). gData from ref 57 and 
58. Data from ref 55. j Mean relative deviation (percent) from experimental harmonic frequencies. 

STO-3G 3-21 G 6-3 G* 1 MB SV DZ DZ? 
result 1% 

1 ”empirical ‘ I  j convergent 
range systematic range 

error 
Figure 1. Error of ab initio HF results (e.g., bond lengths) as 
function of the number of basis functions, m. (Note, however, 
that for any basis set the energy is above the HF limit.) 

basis sets of limited size that one can only afford to 
employ in many applications, there is no regular de- 
pendence of the result on the size of basis set (cf. Figure 
1). Rather, due to error compensation, different basis 
sets perform differently for different purposes. Hence, 
there is an “empiric” range where the qualification of 
the user comes into play. In the best case, deviations 
from the HF limit or experimental results are system- 
atic and increments can be deduced to make reliable 
predictions in other cases. 

This is not the place to analyze the performance of 
basis sets in SCF calculations in general. We will rather 
offer a short account of what we have gathered from 
several compilations and our own experience. Table 1 
attempts to summarize typical results of SCF calcula- 
tions for the prediction of structures and vibrational 
frequencies using minimal (MB), double-{ or valence 
double-{ (DZ/SV), and polarized basis sets (DZP). 
While in the upper part of the table we quote what has 
been gathered from a large number of calculations for 
a broad variety of basis sets,37p49 in the lower part we 
add specific information for Pople’s basis sets. Minimal 
basis sets are connected with a rather large uncertainty, 
but different basis sets behave differently. While 
STO-3G is pretty good for molecules containing first- 
row atoms, it gets increasingly worse when higher ele- 
ments are present. The MINI-1 basis set from Huzi- 
naga’s laboratory5w2 yields bond distances that are 
systematically too long by 4.5-7.5% and 5-10% for 
A-H and A-B bonds, respectively (mean absolute de- 
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viations 7.5 and 11.5 pm for A-H and A-B bonds, re- 
spectively) .54-62p57 Moreover, it yields excellent bond 
angles. There are also indications,5742 though evidence 
is not too extended, that it can compete with the 3-21G 
basis set in vibrational frequency calculations. Quali- 
tatively correct geometries and vibrational frequencies 
can be obtained at  the SCF level provided that a 
carefully chosen DZP basis set is used. The economic 
and popular 6-31G* basis set is defined for first- and 
second-row elements only and is not completely satis- 
factory. It is typical for polarized basis sets that too 
short bond distances and too large harmonic vibrational 
frequencies are obtained at the SCF level. 

As far as the charge distribution is concerned, dipole 
moments are too large at  the SCF level, typically 
10-30% for DZP basis sets (mean absolute deviation 
0.35 D).63 For minimal basis sets mean absolute devi- 
ations of 0.65 D have been observed.63 However, due 
to fortunate error compensation some minimal basis 
sets may yield much better results. For example, dipole 
moments calculated with the STO-3G basis set a r e  
nearly as close to experimental data as are 6-31G* re’ 
~ u l t s . ~  Nonpolarized SV or DZ basis sets are not rec- 
ommended; they tend to overestimate the charge sep- 
aration and yield too large dipole moments. 

Among energy data, ionization potentials rank high 
in solid-state theory as they are directly connected with 
concepts of bonding and electronic properties of solids. 
A wealth of experimental data is available. Most fre- 
quently, calculations are based on Koopmans’ theorem, 
which equates (for closed-shell systems the 
ionization energies with the negative of the orbital en- 
ergies. Under this assumption typically too high values 
are obtained provided that sufficiently extended basis 
sets, e.g., DZP, are used, while too low values result if 
an independent SCF calculation is performed for the 
cation (reorganization effect).6 The reorganization ef- 
fect is partially cancelled (frequently, not always) by 
the correlation effect. Hence, rather large errors (up 
to 1-2 eV) may be met for ionization energies calculated 
at  the SCF level, in particular when minimal or non- 
polarized basis sets are used. 

For reaction energies, reliable results (f20 kJ/mol) 
can be expected at the SCF level only when the reaction 
preserves the number and type of electron pairs as well 
as the spatial arrangement of the nearest-neighbor 
pairs.66 To this class belong the so-called isodesmic 
reactions (retention of the number of bonds of a given 
formal type) and protonation or deprotonation pro- 
cesses.6 An example of an isodesmic reaction is the 
condensation reaction 

2 -(-0)3SiOH - -(-O)3SiOSi(O-)3 + H20 
which plays an important role in the chemistry of silica 
and zeolites and has been recently studied by SCF 
calculations (6-31G* basis set).67 Deprotonation ener- 
gies of hydroxyl groups on surfaces of zeolites and re- 
lated catalysts have been calculated by SCF methods 
and used as a measure of their Bronsted a ~ i d i t p ~ ~  (cf. 
section VI1.D). 

-(-O),SiOH - -(-O).$iO- + H+ 
The quoted error of *20 kJ/mol refers to neglected 
correlation effects and assumes that at least DZP basis 
sets are employed (further augmented by diffuse s, p 
functions if anions are involved). For smaller (SV, DZ) 
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basis sets the error may increase up to f80 kJ/mol.6 
Minimal basis sets are not recommended. 

C. Electron Correlation 

Electron correlation effects, which are neglected in 
the Hartree-Fock (HF) approximation, can be taken 
into account by configuration interaction (CI) meth- 
o d ~ . ~ ’  The exact wave function is constructed as su- 
perposition of the HF determinant (cf. eq 11.2; a 
short-hand notation is adopted here specifying diagonal 
elements only and omitting normalization factors) 
qHF(r1, rn) = I+i(ri), ..., +i(ri), ..., +j(rj), +,,(rn)I 

(11.20) 
and all determinants $$:. obtained by substituting an 
increasing number of occupied molecular orbitals i ,  j ,  
k ,  ..., by virtual (unoccupied) orbitals a ,  b, c ,  .... 

S, D, T, Q, ..., label superpositions of all determinants 
of a given type, i.e., singly, doubly, triply, and quadruply 
substituted determinants. E.g. 

\k = \kHF + \kS + \kD + *T + \kQ + e.. (11.21) 

occ uno 
(11.22) 

with 
\k$(r1, r2, ..., r,,) = 

l+l(rl), ..., ..., +&j), ..., +,,(r,,)l (11.23) 
Although the exact solution of the Schrodinger equa- 
tion, in principle, can always be approached by taking 
all possible substitutions into account, such “full CI” 
calculations are hardly feasible for systems with more 
than about 10 electrons and basis sets larger than DZP 
even in the days of  supercomputer^.^^^^^ 

It is the major concern of present-day computational 
quantum chemistry to find effective methods for 
treating electron correlation in an approximate way. All 
the methods rely on some idea of how to make the 
expansion (11.17) shorter and how to confine it to cer- 
tain types of substitutions. Inclusion of triples, $T, is 
already the frontier of present research. Admittedly, 
looking from the outside, the broad variety of methods 
suggested and the vast collection of acronyms in use 
among quantum chemists are at  least as frustrating as 
all the acronyms used to label highly specialized spec- 
troscopic techniques. As will emerge from later sections 
of this review, inclusion of electron correlation in ab 
initio calculations on solid-state problems is still ex- 
ceptional. We skip therefore a systematic account of 
the methods available and mention only the most im- 
portant correlation effects in solid-state and surface 
studies and common possibilities to treat them. It is 
useful to distinguish dynamical and nondynamical 
correlation effects since they require different approx- 
imations. 

( 1 )  Nondynamical Correlation Effects. The 
one-determinant Hartree-Fock ansatz provides a 
qualitatively wrong picture of the electronic structure. 
Due to energetical near-degeneracy of two or several 
determinants, a superposition of them is necessary to 
obtain a satisfactory zero-order approximation. A 
textbook example is the wrong dissociation limit that 
the one-determinant ansatz yields for the homolytic 
fission of chemical bonds (see, e.g., ref 31). Consider, 
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for example, a H2 molecule with atomic orbitals xa and 
Xb a t  nuclei Ha and Hb. In the closed-shell HF ap- 
proximation both electrons are described by the same 
molecular orbital $, and differ only by their spin 
functions, cy and (a is the spin coordinate): 

ql(rl, r2)  = I$l(rl) 4 a l )  $l(r2)P(a2)l (11.24 

The orbital expansion coefficients (cf. eq 11.6) are given 
by symmetry. 

$l(r) = Cl(Xa(r) + Xb(r))  (11.25) 
Substituting eq 11.25 into eq 11.24 yields (neglecting the 
spin part and normalization constants) 
ql(rl, r2)  = Xa(r1) ~ a ( r 2 )  + Xb(r i )  ~ b ( r 2 )  + 

Xa(r1) Xb(r2) + Xb(r1) Xa(r2) - - @On + P O v  (11.26) 

Le., the HF wave function gives equal weight to situa- 
tions that may be described as “ionic” 

H,Hb+ + Ha+&- (11.27) 

Xa(r1) Xa(r2) + Xb(r1) Xb(r2) 
+ion = 

and as “covalent”. 
k a k b  + k b k a  (11.28) 

Xa(r1) Xb(r2) + Xb(r1) Xa(r2) 
p o v  = 

While this appears to be a fair representation of a 
chemical bond close to its equilibrium distance, it 
qualitatively fails for two hydrogen atoms a t  large 
distance, I, which are described by P O v  alone: 
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and to solve for the optimum orbitals 

4 1 ( r )  = ClaXa(r) + ClbXb(r) 

4 2 W  = caaxa(r)  + ~ Z b ~ b ( r )  

(11.35a) 

(II.35b) 

qGVB includes both P O v  and $1 as special cases. A t  
infinite distance the optimum orbitals are just 4, = xa 
and 42 = Xb and qGVB - Wov. Forcing 4, and 42 to be 
equal yields \kGw = ql. Applications of the variational 
principle to (11.34) and (11.35) leads to HF-like equa- 
tions, and the computational problems are similar as 
described in section ILA. The method is known as the 
two-configuration SCF or generalized valence-bond 
(GVB) method.72 It can be found in recent versions of 
standard ab initio programs like GAUSSIAN86u and 

As the H2 example shows, HF calculations are not 
capable of providing potential surfaces for processes 
involving breaking and/or formation of chemical bonds. 
For such purposes, the GVB and other multiconfigu- 
ration SCF (MC-SCF) methods are the proper choice.73 
As long as one is interested in a qualitatively correct 
description only, small polarized basis sets, e.g., DZP, 
or even nonpolarized split-valence basis sets, e.g., 3-21G, 
may be employed. Combined with gradient techniques 
and methods for localizing stationary points on hy- 
persurfaces, small basis set MCSCF calculations proved 
very powerful tools for qualitative studies of potential 
surfaces.74 An example for the use of a multidetermi- 
nant wave function to describe surface reactions is 
provided by the ab initio of the symmetric path 
for the dissociative chemisorption of H2 on a defect of 
the MgO surface (cf. Table 16). A DZ basis set was 
employed. 

A similar failure of the one-determinant HF method 
has been observed in the description of the Si( 11 1) and 
Si(lO0) electronic surface states (cf. section VI).7679 Let 
us consider76 two atoms of the Si(l l1) surface, IIa, 

HONDO 6A48 

(111) (100) 

Since, with infinite separation, the energy of (11.27) is 
higher than that of (11.28) (by the sum of the ionization 
potential and the electron affinity), the HF one-deter- 
minant ansatz greatly overestimates the dissociation 
energy and the potential curve ends a t  an incorrect 
state. The HF problem (11.7) has another solution also 
given by symmetry: 

g2(r) = cz(xa(r) - x b ( r ) )  (11.29) 
This ”antibonding” orbital may be used to construct a 
determinant 

q 2 ( r 1 ,  r2 )  = I$2(rl)4al) J12(r2)P(a2)l (11.30) 
that is “doubly substituted” with respect to 
stituting (11.29) in (11.30) shows 

Sub- 

q2 = @ion - p o v  (11.31) 

At large distances, q2 becomes energetically degenerate 
with $, and the proper ground state, WoV, is obtained 
as 

@COV = Q 1 -  *2 (11.32) 
A t  arbitrary distances, the optimum mixture of co- 

valent and ionic contributions can be found from the 
two-configuration ansatz. 
q = clq, + c2q2 = c c o v p v  + Cionaion (11.33) 
Instead of solving for the optimum coefficients C ,  and 
C2 in (11.30), it is also possible to make the equivalent 
two-configuration ansatz 
qGw(r1, r2) = 

I4lbl) 44 42h-2 )  P(a2)l + I 4 2 W  4 4  41(r2 )  P(a2)l 
(11.34) 

IIa IIIa 
e.- . -  

I1 b IIIb 

IIIC 

and of the Si(lO0) surface, IIIa, the latter, however, after 
formation of a surface bond between pairs of surface 
atoms, IIIb. In both cases we have two weakly over- 
lapping orbitals each occupied with one electron, just 
the biradicaloid situation of almost dissociated H2, I. 
For both structures the one-configuration HF method 
will yield a too high energy due to contamination of the 
wave function with an energetically unfavorable ionic 
contribution. Moving one surface atom up and the 
other down creates structures IIb and IIIc, whose op- 
timum wave functions are more ionic. (A planar ge- 
ometry about Si favors the cation, while stronger py- 
ramidalization favors the anion.) Hence, when within 
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a one-determinant HF calculation the surface atoms are 
allowed to relax, the fixed ionic component of the wave 
function favors structures like IIb and IIIc. The point 
is that such a finding may be an artefact of the one- 
determinant ansatz and need not persist when nondy- 
namical correlation is included by a GVB treatment. 
Indeed, calculations on Si(111)78979 and Si(100)77 surface 
models have shown that the electronic ground state of 
these surfaces has singly occupied orbitals on each 
surface atom spin-paired to an overall singlet state. 

A third example of the same Hartree-Fock pathology 
(two or more orbital configurations become energetically 
degenerate) is the mixing of 3d”+’4s1 and 3dn4s2 con- 
figurations of transition-metal atoms when forming a 
bond with hydrogen atoms80-81 or with ligands.81.82 In 
spite of some promising developments (e.g., the 
CASSCF-CCI method by Siegbahn et al.;s3-86 cf. ref 81), 
transition-metal systems are still a “challenge” 86 for 
quantum chemistry and routine methods are not 
available. 

(2) Dynamical Correlation Effects. The HF de- 
terminant is a good zero-order approximation. This 
type of correlation makes minor corrections to the HF 
results of molecular geometries, force constants, mo- 
lecular properties, or ionization and excitation energies. 
A typical dynamical correlation effect is the dispersion 
energy, a contribution to intermolecular bonding not 
obtained at the HF level. Although the dispersion en- 
ergy is very small compared with the total energy of 
interacting subsystems, it is responsible for the van der 
Waals bond between rare-gas atoms and nonpolar 
molecules and contributes also significantly to other 
types of intermolecular bonding, e.g. hydrogen bonds. 
Hence, HF calculations should not be expected to yield 
reliable stabilization energies for rare-gas, ionic or mo- 
lecular crystals (cf. section V). There are indicationsm-@ 
that dispersion energy is also involved in the binding 
of molecules onto metal surfaces. 

Economic methods are available for coping with dy- 
namical correlation that focus on the dominant 
contribution coming from doubly substituted deter- 
minants: configuration interaction including (single 
and) double substitutions, CI-(S)D; coupled pair func- 
tional,gO CPF; coupled electron pair a p p r o x i m a t i ~ n , ~ ~  
CEPA and Maller-Plesset perturbation theory.g1 The 
latter includes only double substitutions up to second 
or third order (MP2, MP3) while in the fourth order 
also singles, triples, and quadruples may be included 
(SDTQ-MP4). More advanced methods start from a 
multideterminant wave function built from MCSCF 
orbitals (vide supra) and consider all determinants that 
are singly or doubly substituted with respect to all 
determinants in the multideterminant wave function. 
This leads to the general MCSCF-MRCI (multirefer- 
ence configuration interaction) scheme, which accounts 
for both nondynamical and dynamical correlation and 
is almost equivalent to full CI. The MCSCF part is also 
comparably expensive. There are, however, some ap- 
proximate schemes that have gained practical impor- 
tance: GVB-CI (Goddard et  al.76) has been used in 
model studies on  semiconductor^;^^^^^ CASSCF-CCI 
(Siegbahn et al.83-85) has been employed to study the 
bonding of transition-metal atoms to various ligands;81p82 
MRD-CI of Buenker and PeyerimhofP2pg3 (which avoids 
the MCSCF step and works with the one-configuration 
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HF orbitals) has met considerable success in calculating 
electronic excitation energies. It is important to note 
that the description of dynamical correlation effects 
requires much larger basis sets than SCF solutions do. 
Polarization functions are absolutely mandatory. In 
contrast to multiconfiguration calculations for quali- 
tative purpose (vide supra), calculations that aim a t  
dynamical correlation effects but employ nonpolarized 
basis sets as occasionally found in literature are simply 
meaningless. 

In spite of the fact that going beyond the HF ap- 
proximation and taking electron correlation into ac- 
count, even in an approximate way, is computationally 
very demanding, for molecules, calculations at  the 
correlated level are going to become routine now. The 
simplest a proximation to the (dynamical) correlation 

turbation theory up to the second order (MP2):91 
energy, E,,,,, 8) is provided by the Maller-Plesset per- 

a b  

The expression refers to a closed-shell ground state, i 
and j being doubly occupied orbitals. The most time- 
consuming step is the transformation from integrals 
over basis functions, (pvIXa) (eq 11.14), to the integrals 
over molecular orbitals, ( iabb):  

( iabb)  = C C i p C & j X C b a ( p V l X b )  (11.37) 

Efficient computer codes are available (GAuSSIANS~,~~  
H O N D O / M P , ~ ~ - ~ ~  HOND06.5,@ CADPAC47) that 

yield the MP2 correlation energy in about the same 
time as the SCF energy and in an even shorter time if 
explicit use is made of point symmetry in the integral 
transformation step.95 Analytical  gradient^^^?^^ (and 
even analytical second d e r i v a t i v e ~ ~ ~ p ~ )  of the MP2 en- 
ergy with respect to molecular coordinates are also 
available in standard programs and facilitate greatly the 
search for equilibrium structures and the evaluation of 
vibrational frequencies. It seems that already at  the 
MP2 level rather accurate geometries and harmonic 
vibrational frequencies can be obtained (cf. Tables 1 
and 3), in particular if sufficiently extended basis sets 
are used.% There is also a substantial improvement of 
electric multipole moments and intermolecular inter- 
action energies. Moreover, substantial portions of the 
dispersion energy can already be obtained by the simple 
MP2 method (see, e.g., ref 97-102 and references 
therein). 

In molecular calculations, MP2 is taking over now the 
position of “the” standard method of computational 
quantum chemistry held by the SCF method since the 
late 1960s. To this role belongs that one knows exactly 
how to improve the MP2 result in case it fails: taking 
the double substitutions to higher orders, including 
higher substitutions (triples, quadruples, and also sin- 
gles in SDTQ-MP4) or switching to a multireference 
treatment. 

D. Density Functional Approach 

The computational problems of conventional 
“Hartree-Fock plus correlation energy” methods of 
electronic structure calculations, in particular the 
frustratingly steep increase in computer requirements 

Iru 
XU 
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TABLE 2. Examples of ab Initio and Local Density Approximation Studies Employing Basis Sets of Gaussian-Type 
Functions (Units: Bond Distances (R), pm; Bond Angles, deg; Harmonic Vibrational Frequencies (P), cm-'; Energies (De  and 
AE), kJ/mol) 

ab initio method 
local density approximation result: 

system; basis seta parameter resultb system; basis seta parameter HF/beyond HF 
H3SiOSiH3128 R(Si-0) 164.2 (163.4)b H3SiOSiH2*13' R(Si-0) 163.2/165.5d 
GTO (25)' LSi-0-Si 142.5 (144.1)b 6-31G* Ai-0-Si 143.7/135.0d 

H3SiOSiH230J31 R(Si-0) .../163.7d 
6-31G** (2d, 2 ~ ) '  Ai-@Si .../144.7d 

H~O-CU'~' R(Cu-0) 
(14,10,6,l),f DZP D,8 
Ni(C0)41M R(Ni-C) 
[11,8,3/6,4,11 R(C-0) 

"NiC 
YCO 

~~(3-1)-0iJ24J26 Rj 
numerical atomic orbitals A E k  

200 
73 

180.5 (182.5Ib 
113.7 (112.2)b 
418 (371)b 

2150 (2132)b 
53 
8.1 

227/217h 

181.4 
113.5 
277 
2351 
76 
116 

12/2oh 

Osee text for an explanation of the symbols and abbreviations. Basis sets are specified by giving the number of s, p, d, ..., functions in 
brackets. Square brackets refer to contracted GTFs while parentheses refer to uncontracted (primitive) basis functions. A slanted stroke 
separates entries for atoms from different periods in descending order. Observed values in parentheses. 25 GTFs localized on nuclei and 
bond midpoints; cores replaced by pseudopotentials. "MP2 results. e T w ~  seta of polarization functions on all atoms. The McLean/ 
Chandler basis set was used on Si.lS2 funcontracted GTF set on Cu. #Binding energy. hCI-SD corrected for missing quadrupole substi- 
tutions (Davidson). 'Al,(r-y) denotes a cluster of z atoms having x atoms in the first and y atoms in the second layer. jDistance of the 0 
atom above the A1 surface. kSurface penetration barrier. 

TABLE 3. Comparison of Results of the Local Density Approximation (LDA) with ab Initio HF and MP2 Results for Water 
(Units: Distances, pm; Angles, deg; Dipole Moments (a), e ea.; Wavenumbers (j), cm-') 

local density approximation ab initio 
basis set functional R(OH) LHOH 1.1 ref basis set method R(OH) LHOH 1.1 ref 

4-31G GL" 97.9 111 115 4-31G HF 94.2 111 0.98 115 
4-31G XCY 97.7 105 113 MP2 97.5 109 44 
DZP' * Xa' 96.8 105.3 0.80 133 DZP HF 94.4 106.6 0.86 99, 137 

DZP MP2 96.2 104.5 0.85 99, 137 
TZPPd XCY' 97.7 104.7 120 [5,4,2/3,2] SCF 94.1 106.3 0.80 137 
GTF (13)f CAS 97.4 105.5 0.74 119 [5,4,2/3,2] MP2 95.8 104.5 0.78 137 
LMTOh VWN' 97.1 106.0 0.73 112 
obsdj 95.7 104.5 0.73 obsdj 95.7 104.5 0.73 

local density approximation ab initio 
basis set functional ;OH8 cHOH~ ref basis set method ?OH'' 6HoH' ref 

DZP'b XCYC 3734 1839 133 DZP SCF 4152 1750 96 
DZP MP2 3913 1665 96 

GTF (13)f CAE 3712 1618 119 ST0[5,4,2/31] SCF 4132 1772 138 
LMTOh VWN' 3680 1590 112 [5,4,2/3,2] MP2 3859 1641 96 
obsd (harmonic)',"' 3832 1649 obsd (harmonic)jpm 3832 1649 

Gunnarson-L~ndqvist.~~' P' denotes flat polarization functions (small exponents). ' CY = 0.708 96. dTriple-< Slater-type orbital (STO) 
= 0.7."' 

Localized muffin tin orbitals. 
Symmetric OH stretch. ' Deformation. 

basis set augmented by two sets of polarization functions (two p functions for hydrogen, two d functions for all other atoms). 
f 13 GTO localized on nuclei and bond midpoints; cores replaced by pseudopotentials. gCeperly-Alder.llo 
Vosko-Wilk-Nusair.lw J For reference to observed values, see the quoted theoretical papers. 

,,,Harmonic wavenumbers. 

with the length of the basis set, is a permanent chal- 
lenge. Hohenberg and Kohnlo3 have shown that the 
energy of a many-electron system is a unique functional 
of electron density, p(r). Hence, to get the energy one 
needs not know the many-particle wave function q(rl, 
r2, ..., rn), but the one-particle density, p(r), only. Kohn 
and Sham104 have further shown that the density that 
yields the minimum energy of a given system can be 
found by solving a single-particle equation with an ef- 
fective "exchange-correlation" potential, uxc[p(r)] 
Mr1) + j(rJ + vxc[p(rl)ll Wl) = Ei$i(rJ (11.38) 
with 

p( r )  = C W )  h*(r )  (11.39) 

Formally, this equation resembles closely the HF 
equation (11.3) with the Coulomb potential j(rl) given 

i 

by eq II.5b, but having the HF exchange potential 
(11.5~) replaced by v,. The point is, however, that the 
exact form of the functional of the exchange correlation 
energy and, hence, also of the exchange-correlation 
potential, vxc, are unknown in general. The local den- 
sity approximationlo3 (LDA) assumes that the exchange 
plus correlation energy can be expressed as ,. 

(11.40) 

and a local approximation to the exchange-correlation 
potential is formally obtained as 

(11.41) 

Only for simple model systems, however, can an explicit 
expression be derived for vxc. For the homogeneous 
electron gas one obtains 
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with a = 2/3. The parameter a was introduced to 
connect (11.42) with a very similar result, a = 1, derived 
by Slaterlo5 as a statistical approximation to the ex- 
change potential only. The parameter a is frequently 
used as adjustable parameter. 

Potentials similar to those in (11.38) but allowing 
different densities for electrons with a and p spins are 
known as local spin density (LSD) approximation.lo6 
Various potentials have been proposed over the years, 
e.g. the potential of Gunnarson and Lundqvist (GL).Io7 
The most advanced ones are the parametrization of 
Vosko, Wilk, and Nusair108 (VWN) and Perdew and 
Zunger’Og (PZ) of accurate Monte Carlo simulations of 
the electron gas.l1° 

The appealing feature of the LDA approach is that 
it treats both exchange and correlation effects on an 
equal footing and requires only to solve one-particle 
equations with a local effective potential. Its limitation 
is that the exact potential is not available and one is 
forced to work with expressions transferred from simple 
model systems. This brings an empirical element in 
such calculations, although they avoid adjustable pa- 
rameters. Therefore, a clear distinction in terminology 
seems desirable between the exact-exchange “HF plus 
electron correlation” approach on the one hand and the 
LDA or LSD-based approaches on the other hand. The 
former are known as “ab initio” methods, while for the 
latter the terminus “first principle” method is widely 
accepted. Perhaps it is better to be more specific and 
refer directly to the “density functional” (DF) or to the 
“local (spin) density approximation” (LDA, LSD). 

As far as the computational aspects are concerned we 
will consider only the most recent developments that 
have led to methods that allow us to evaluate accurately 
total energies and geometries of molecular systems. 
They all expand the one-electron functions iLi(r) into 
a basis set (cf. eq 11.6). Besides Slater-type orbitals 
(STO)”’ and the very peculiar localized muffin tin 
orbitals (LMT0),16J12 Gaussian-type functions (GTF, 
eq 11.13) have the largest use.l13-l18 It is the use of the 
latter that now brings density functional methods close 
to the mainstream of computational quantum chemistry 
and allows a direct comparison between ab initio and 
LDA-type calculations. As pointed out in previous 
paragraphs of this section, the major obstacle in con- 
ventional “HF plus correlation energy” calculations is 
the huge number of four-center two-electron integrals 
(eq 11.14). In the LDA-type methods four-center inte- 
grals can be completely avoided by least-squares fitting 
the one-electron density to auxiliary basis sets of GTF 
(e.g., ref 113, 117, and 119): 

iJ(r) = C a x x x ( % - )  (11.43) 
h 

This yields for the matrix elements of the Coulomb and 
exchange-correlation potential 

and 

(V,,),,, = (w.lvX,lv) = C b , ( w v ( d X C ) )  (11.46) 

respectively. Hence, the matrix elements of the LDA 
one-particle operator (cf. eq 11.11 and 11.12 for the 
corresponding HF expressions) 

F F u L D A  = (PI&) + J F y  + (V,,),, 01.47) 

(I 

are built up from three-center integrals 

(11.48) 

only. Note that it is the nonlocal character of the HF 
exchange potential (eq 11.5~) that prevents a similar 
expansion in HF  calculations. 

Having no own experience with LDA/GTF-type 
calculations, it is difficult to assess the computer re- 
quirements in comparison with HF  (or MP2) calcula- 
tions for the same basis set. It may well be that there 
is no significant difference for small- and medium-sized 
molecules.120 It is claimed,120 however, that LDA 
methods get the advantage as the size of the system 
studied increases. The limitation to three-center inte- 
grals results in computational work that (formally) 
grows for LDA methods like m3 instead of m4 for HF 
calculations (m is the number of basis functions). 
Moreover, it seems that LDA results are less basis set 
dependent and effects of higher polarization functions 
(beyond d for first row atoms, beyond p for hydrogen) 
are negligible.117J21J22 

Until recently the use of LDA methods for molecular 
structure determination was limited (i) by difficulties 
to ensure that the numerical error of the density fits 
(eq 11.43 and 11.44) is equally small for different points 
of the potential surface (see, e.g., ref 123) and (ii) by 
the lack of expressions for an analytical evaluation of 
energy gradients that proved exceedingly effective in 
ab initio molecular structure calculations (cf. section 
II.A).3F42 Gradient expressions for LDA total energies 
have been derived for both ST0I2’ and GTF124J25 basis 
sets. Due to these and other technical developments 
such as effective core potentials126 or optimized basis 
sets,ln the number of high-quality LDA calculations on 
molecules employing GTF (or STO) basis sets will 
rapidly grow and their limits and merits in comparison 
with conventional ab initio methods will emerge. 

Table 2 shows examples of applications of both types 
of approach (HF and LDA) to the same or a similar 
problem. Table 3 provides a more specific comparison 
for the equilibrium structure, the harmonic vibrational 
frequencies, and the dipole moment of the water mol- 
ecule. From this table the sensitivity of the results 
toward details of the calculations (the basis set em- 
ployed or the specific form of the density functional 
adopted) can be assessed. It is customary to compare 
LDA results with HF results. Since, within the con- 
ventional ab initio approach, correlation can also be 
included by the MP2 approximation (cf. section 1I.C) 
at  little extra expense (about the same as for the HF 
calculation itself), a fair comparison should consider 
MP2 results as well. 

The equilibrium geometries of 40 molecules have 
been very recently determined by LDA calculations 
making use of analytical energy gradients.lm STO basis 
sets of triple-c quality augmented by two sets of po- 
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originally derived by Slater as a statistical approxima- 
tion to the HF exchange energy.lm In practice, however, 
results obtained by this or more advanced exchange 
functionals (e.g., ref 139) do not converge to the HF  
limit but effectively account for correlation effects. On 
the other hand, attempts have been made to find a 
“correlation-only” functional for a posteriori calculation 
of the correlation energy, e.g. by eliminating the ex- 
change part from the LSD f ~ n c t i o n a l ’ ~ ~ J ~ ~  (Lie and 
Clementi;la Colle and Salvetti (CS);14 Stoll, Pavlidou, 
and Preuss (SPP)141J42). The SPP functional has been 
tested in calculations of diamond145 and silicon crys- 
tals.l& For diatomic  molecule^,'^^ the SPP correlation 
approximation leads to a contraction of bond lengths 
while the experimental values are larger than the SCF 
prediction (vide supra). The utility of the CS func- 
t i o n a P  has been tested in both molecular (e.g., for 
generating interaction potentials between water mole- 
c u l e ~ ~ ~ ~ )  and solid-state a p p l i c a t i ~ n s l ~ ~  (cf. section 
1II.D). 

The two recent volumes on ab initio methods in 
quantum chemistrp~~ contain three review articles that 
discuss the theoretical background and molecular ap- 
plications of LDA-type methods in great detail.1618 For 
additional information, we refer to recent review vol- 
umes. l4l15 

In summary, substantial progress is being made with 
predicting molecular structures and total energies from 
DF theory. However, it is also obvious that there are 
significant practical and theoretical problems not 
mentioned in this paragraph (e.g., the “term and 
multiplet” prob1eml7J8) and justify to make a clear 
distinction between LDA-type methods and exact-ex- 
change “HF plus electron correlation” ab initio methods. 
The most serious difficulty is certainly that there is 
presently no straightforward way to improve the density 
functional when necessary. 

larization functions (two p functions on H, two d 
functions on all other atoms) were employed. The mean 
absolute error of bond angles (1-2’) was slightly larger 
than that observed for HF/6-31G* calculations on the 
same set of molecules. The mean absolute error in the 
bond lengths was below 1 pm, which is smaller than the 
mean absolute error of the HF  model. However, as 
Table 3 indicates, the MP2 model is likely to perform 
better than LDA for this type of basis set (see also 
Table 1). When the 4-31G basis set was employed for 
calculations of the harmonic vibrational frequencies of 
eight diatomic molecules,115 the mean error of the HF 
results was 11% (as typical of SV basis sets; cf. the 
3-21G results in Table l), but it was only 5% for the 
LDA results. While the HF model tends to yield too 
short bond distances (cf. Table l), LDA results show 
the opposite trend. The MP2 model, however, seems 
to yield highly accurate geometries provided that only 
sufficiently extended basis sets are used.96 Since the 
accuracy of the harmonic vibrational frequencies is 
largely due to the accuracy of the equilibrium geometry 
at which the force constants are evaluated, these trends 
explain that frequencies are overestimated by the HF 
model, underestimated by the LDA model, and quite 
satisfactorily reproduced by extended basis set MP2 
calculations. (Comparison should be made with ob- 
served harmonic frequencies; otherwise, anharmonicity 
effects may cause an apparent agreement between ob- 
served and LDA results.) These trends on bond dis- 
tances and vibrational frequencies are also illustrated 
by results for the water molecule (Table 3) and for some 
diatomic m01ecules.l~~ 

The most tempting performance of the LDA model 
is its ability to provide reasonably accurate bond dis- 
sociation energies while the one-configuration HF me- 
thod fails. In the previous paragraph it was pointed out 
why. It is also clear from section 1I.C that MP2 cannot 
repair this defect. One should be aware, however, that 
this nice feature of the LDA model depends upon siz- 
able error cancellations between the separate atom and 
molecular energies. Within the LDA, total energies 
typically lie above the HF limit and even above the HF 
result obtained with the same basis set, although it 
accounts for part of the correlation energy. The largely 
overestimated energy of the van der Waals bond in the 
Bez dimer16J16 is a clear indication that such an error 
compensation need not always work. It would be in- 
teresting to see applications of LDA-type methods to 
van der Waals complexes, e.g. the water dimer. Such 
a calculation has been recently mentioned, but no en- 
ergies have been reported.14* Large-scale HF  plus 
CI-SD calculations predict a weak van der Waals bond 
for the HzO-Ni complex89 (Table 2). In contrast, LDA 
calculati0ns~3~ predict a much stronger bond for the 
HzO-Cu complex. It is presently not clear to what 
extent basis set problems contribute to this difference. 
The latter calculation uses an uncontracted set of GTF 
on the Cu atom, which is likely to produce a significant 
basis set superposition error (cf. section V.C). It has 
been already mentioned that the success of LDA-type 
methods relies on subtle error cancellations between 
exchange and correlation energies. Thus, attempts to 
evaluate these contributions separately within density 
functional theory have met with little success. On the 
one hand, the LDA functional (11.42) (with a = 1) was 

I I I .  “ Physlcal ” Approach: Crystal Orbitals 

A. Basic Idea 

The difficulty in dealing with solids is that in this case 
the Roothaan equations (11.7) attain infinite dimension, 
reflecting (on the molecular scale) the infinite extension 
of crystallites. The expansion of the “molecular” or- 
bitals (eq 11.6) extends not only over functions centered 
on atoms within one elementary cell (index p )  but also 
over all elementary cells labeled by a triple of integers 
that count the lattice translations with respect to the 
reference cell, 1 = (Il, lZ, 1 3 ) :  

?N m 

(111.1) 

As N approaches infinity, the direct solution of the 
equations 

3N m 

m u  
xx(P; - E,S:y)c; = 0 (111.2) 

whose dimension is 3N X m is practically impossible. 
Blochlm showed how translation symmetry can be ex- 
ploited to make the problem tractable. For an ideally 
periodic solid, at  the same point r in different repeating 
units, the orbitals differ only by a complex phase factor 
eikl. 
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pi(r + 1) = eiklcpi(r) (111.3) 

Note that 
1 = llal + 12a2 + 13a3 (111.4) 

is now a lattice vector describing translations in real 
space. This implies that the wave vector 

k = klbl + k2bz + k3b3 (111.5) 

is defined in the reciprocal space (but is not necessarily 
a vector of the reciprocal lattice). Equation 111.3 says 
that the electron density at the same point of different 
repeating units is identical: 

I &  + 1)12 = e01dr)12 (111.6) 

Of course, any proper solution of eq 111.2 would show 
the properties demanded by eq 111.3 and 111.6. How- 
ever, to take advantage of translation symmetry, from 
the very beginning one makes use of ”symmetry- 
adapted” functions as basis  function^,'^^ i.e., functions 
belonging to certain irreducible representations of the 
translation symmetry group. This implies that matrix 
elements between basis functions belonging to different 
irreducible representations vanish, a well-known fact 
for point symmetries of molecules and, e.g., the origin 
of selection rules in spectroscopy. In the case of crys- 
tals, the following combinations represent translation 
symmetry 

ikl 1 x,” = e XL x: = x,(r - 1) 
1 

(111.7) 

where the wave vector k is indicative of different irre- 
ducible representations. They are called “Bloch 
functions”. The solutions iCli(r) we seek, the “crystal 
orbitals”, are now expanded in k-dependent Bloch 
functions instead of atomic orbitals in real space. What 
we have gained is that matrix elements between Bloch 
functions belonging to different k vectors vanish, e.g. 

r;”;‘y”‘ = l x , ” ( r )  F(r) xF(r) d r  = bkktq: = b k k ! ~ ~ )  
(111.8) 

As result, the infinitely dimensioned matrix blocks and 
the secular problem reduces to secular problems, one 
for each k vector, resembling that of molecules: 

m 

E(?!’ - Ei(k) S$’)C~ = 0 (111.9) 

Their dimension is m, the number of CGTF within an 
elementary cell. If there were only one orbital in the 
cell, the HF solutions would be entirely given by 
translation invariance and would be identical with the 
“symmetry-adapted” orbitals xr themselves (eq 111.7). 
In the general case however, there is mixing between 
different Bloch functions belonging to the same k 
vector: 

Y 

Wr) = Cc,”ix,”(r) (111.10) 
L 

The coefficients cri, which determine the crystal orbitals 
$:(r), are obtained when solving (111.9) for a particular 
k vector. Note that we use the k vector also to label 
the HF solutions. Hence, i extends over m only. For- 
mally, the HF solutions of the crystal could be ex- 
panded like 

Sauer 

(111. l l a )  

However, due to symmetry blocking 

C E k  = bkk& (111.11 b) 

Evaluation of electron density requires summation 
over all the occupied orbitals of each k subspace. 

These matrix elements enter the two-electron part G(R) 
of the Fock matrix (cf. eq 11.12), which involves a double 
sum over all cells in direct space: 

G(R);i = X Z X X R ~ ~ [ ( ~ ~ l ~ ~ )  - (;:lit)] (111.13) 

et = h;; + G(R);t (111.14) 

The Fock matrix elements of a particular k vector are 
given as a Bloch sum or over all cells: 

p$) = X e i k l p 1  (111.15) 

Methods that solve Roothaan equations of type 111.9 
for solids to get the “crystal orbitals” (eq 111.10) that 
are translation symmetry adapted are called crystal 
orbital (CO) methods or, more explicitly, LCAO-CO 
methods. For details and references to original papers 
we refer to the reviews in ref 12 and 152. 

? s p a  

I p’ 

6. Difficulties of a Nonempirical Treatment 

Compared with the molecular problem, the solution 
of the Roothaan equations for the solid (eq 111.9) is 
complicated by two facts. The minor problem is that 
we have to solve them for an infinite number of dif- 
ferent wave vectors and that we have to sum over all 
the solutions (cf. eq 111.12) to get the electron interac- 
tion potential that enters the Fock operator for any k 
vector. In practice, we need only a relatively small finite 
number. 

First, only wave vectors within the first Brillouin zone 
(BZ) of the reciprocal space yield nonidentical contri- 
butions to Bloch sums: If g is a reciprocal lattice vector 
defined by leg = 2 r n  where n is an integer, each wave 
vector may be written as k = k’ + ng where k’ is within 
the first BZ. Hence, lk = lk’. 

Second, the number of wave vectors is large but finite. 
Namely, we can safely assume that a crystallite, in 
moleculai. scale, is large, but finite and periodic 
(Born-von KBrman periodic boundary conditions). 
Finally, the summation over k vectors is replaced by 
three-dimensional integration, and the number of k 
points within the first BZ really needed is determined 
by practical considerations of the numerical integra- 
tions. It turns out that 5-10 points for each dimension 
will do unless one aims at special features, e.g., very 
accurate density of states. 

The major difficulty, however, of a nonempirical CO 
calculation is the summation over all interactions in 
direct space. If the calculation and handling of two- 
electron integrals ( p v l p a )  is already the bottleneck in 
molecular calculations, it is even more critical when 
interactions with the electrons in neighboring cells have 
to be included up to distances where the electrostatic 
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TABLE 4. Examples of ab initio Crystal Orbital Studies 
ref system dim basis set aim of the study 

( H A  (LiH,),, (LiHd,, (LiHd, 1 STO-3G 

(H-Ben-H), (n = 3, 4), (H-Be,), 
(H-Be3)-, (H-Be-H), 
Be 

diamond 
diamond, Si, cubic BN 

LiH 

Li3N, Liz0 
H (fcc) 
Li, Na (fcc) 
MgO 

MgO(001) surface (slab of 3 planes) 
MgO(110) surface (slab of 2-4 planes) 
CO on Mg(001) (MgO monolayer) 
CO on MgO(110) (slab of 2 planes) 
a-Alz03 (corundum) 

SiOz (a-quartz) 

1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
2 
2 
2 
2 
3 

3 
3 

3 

3 
3 
3 
3 

2 
2 
2 
2 
3 

3 

MB 
MB 
TZP, DZ 
DZ 
DZ, STO-3G 

DZP, DZ, STO-3G 
DZ 

(10,6,2/6,1), 
DZP, DZ 

DZ 
STO-3G 
STO-3G 

effect of doping on structure and energy levels of a chain of 

influence of dopants on polypyrrole films 
band structure of polyaniline 
structure, force constants, cooperative effects in hydrogen 

H atoms 

bonding 

stabilization energy 
structure, force constants, band structure 
chemisorption site and binding energy for H on graphite 
electronic structure of films, surface states 
chemisorption site and binding energy, band structure 

structure, force constants, Fermi surface shape, band 

lattice constant, force constant 
structure, force constants, band structure 

structure, force constants, band structure, compton profiles 

structure charge distribution, compton profile 

lattice constant, bulk modulus 

geometry, energy and equation-of-state parameters for three 

surface relaxation and "rumpling", charge distribution, 
different crystal structures 

surface enerev. Droiected densitv of states 

183 

187 
188 
173 
173 
170 
189 
172 
190 

191 
192 
185 
193 
184 

164 

194, 195 
145, 146, 

196 
197 

198, 199 
156 

200 

201 
202 " " ,_  - 

adsorbate geometry, energy of adsorption, charge distribution 203 
204 

cohesive energy, density of states, electron charge 166 
distribution 

interactions are fading. If N is the number of neigh- 
boring cells and m the size of the CGTF expansion 
within an elementary cell, the number of integrals in- 
creases as N3 X m4 in the worst case, in practice less, 
e.g. as N X m2 for more distant cells. Moreover, better 
basis sets (larger m) usually also require larger N values 
since the GTFs become more diffuse and fall off slowly 
with the distance. 

The problems are formidable and to cope with them 
is a major challenge to theoreticians working in this 
field. Different techniques have been developed and 
have been implemented in different ways in the crystal 
orbital computer programs used by different 
different cutoff procedures to truncate lattice summa- 
t i o n ~ , ~ ~ ~  separation of short- and long-range interactions 
and efficient multipole expansions for the long-range 
(Coulomb) contributions,1s3-1ss use of pseudopotentials 
for the core electrons,1s158 use of helical symmetry for 
complex p o l y m e r ~ , l ~ ~ J ~ ~  and use of point symmetry 
within the elementary 

Moreover, expression 111.13 can be rewritten (m = s 
- r)162,163 

showing that only one of the direct space summations 
(over m) must be repeated in each of the iterations. 
The summation over r is carried out only once 

(111.17) 

bond distance, bond angles, atomic charges 165 

and the number of two-electron matrix elements 
G(":li*Z") that have to be stored and processed is con- 
sicferably smaller than the number of all two-electron 
integrals ($::). 

In spite of all efforts, 17 million integrals had to be 
handled in the crystal orbital calculation of such a 
simple system as beryllium metal.164 Making use of the 
D! space group of quartz, the number of integrals that 
have to be computed in a STO-3G calculation has been 
estimated to be 10 million and the number of two- 
electron matrix elements to be stored and processed at 
each iteration to 1.5 million. This applies to truncation 
criteria that will yield an accuracy of about 0.001Eh/unit 
cell (about 2.6 kJ/mol). Hence, due to important pro- 
gram development recently made,161 calculations on 
systems with more than three to four atoms per ele- 
mentary cell are within reach now.165J66 For systems 
with very few atoms per cell this means that one will 
be able to pass to better basis sets. In doing so another 
problem appears. Because of the high density of atoms, 
the basis set composed of the overlapping atomic sets 
shows linear d e p e n d e n ~ i e s . l ~ ~ J ~ ~  

The limited accuracy of the CO methods (in the order 
of magnitude of 10 kJ/mol), in particular the discon- 
tinuities in the energy curves for variations of geometry 
parameters connected with the approximations in the 
two-electron integral part, prevents at present the op- 
timization of geometry parameters with slowly varying 
energy curves.165 Such difficulties could be avoided by 
analytical gradients that have been formulated also for 
CO Hartree-Fock methods16' but are implemented in 
one of the LCAO-CO programs only.16* 
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turbation by a self-consistent solution of the so-called 
Dyson equation.l= The latter computations, however, 
are even more complex than a CO solution of the per- 
iodic system. The only nonempirical calculation re- 
ported so far (to the authors’ knowledge) was made for 
an infinite chain of Li atoms doped with a hydrogen 
atom and used an STO-3G basis set.186 

C. Survey of Present Achievements 

Table 4 shows representative crystal orbital studies 
with emphasis on two- and three-dimensional systems. 
In spite of technical progress and impressive computer 
code developments, applications to one-dimensional 
periodic structures  polymer^)'^^'^^ prevail among the 
nonempirical crystal orbital calculations reported in 
literature. For such systems it has been possible to 
employ DZ basis sets even when calculating force con- 
stants for an asymmetric unit as large as HCOOH’70 
(calculations on infinite chains of HF, HCN, and H20  
used polarization  function^'^'-'^^) or to perform com- 
plete gradient optimizations on special conformations 
of polyacetylene with a unit cell as large as C4H4 (4-31G 
basis set).’68 

Attempts to include electron correlation effects in ab 
initio CO studies have been also limited to poly- 
mers.12J74-177 Referring to the infinite extension of 
solids, most authors opt for size-consistent methods, e.g. 
Mdler-Plesset perturbation theory up to ~ e c o n d l ~ ~ - ’ ~ ~  
or third order’77 (MP2, MP3; cf. section II.C, eq 11-36). 
The aim of these studies was to improve the optical 
excitation energies (band gaps) that come out too large 
in CO Hartree-Fock calculations. Both for semicon- 
ducting  polymer^'^^-'^^ and for a bent chain of HF  
 molecule^,'^^ reduced band gaps were obtained as the 
correlation corrections yielded quasi-particle valence 
and conduction bands that were shifted upward and 
downward, respectively. A similar study was made on 
solid CH4.17* 

In addition to correlation effects that were already 
mentioned (section ILC), in periodic studies on metallic 
systems a specific failure of the HF approximation is 
observed, namely the density of states at  the Fermi 
energy vanishes.’79 A recent analysis has shown that 
this feature is connected with the particular form of the 
HF exchange operator.la0-ls2 

Due to their very nature, crystal orbital methods have 
difficulties when treating systems with “broken” 
translatory symmetry. Defect sites, e.g., would be 
treated as quasi-periodic. To avoid artificial interac- 
tions between neighboring defects, the effective cell size 
necessary would exceed present computational possi- 
bilities. Attempts in this direction are confined to very 
simple models like chains of hydrogen atoms when 
doped with lithiumla3 (Table 4). In crystal orbital 
studies of surface problems slab models are adopted; 
i.e., periodicity is exploited only parallel to the surface 
while the vertical extension is treated like a cluster with 
two surfaces. Again, computational limitations prevent 
us from making the slab thick enough so that unwanted 
interactions between both surfaces vanish. In a pio- 
neering chemisorption studyla a beryllium slab three 
or four atoms thick has been used and covered on both 
sides with hydrogen. (When only one surface is covered, 
the surface states of the free surface interfere with the 
chemisorptive bond.) A STO-3G study of hydrogen on 
graphite (a single graphite layer only)’& revealed serious 
deficiencies of previous semiempirical CNDO/2 calcu- 
lations. A theoretical description of impurities, vacan- 
cies, or surfaces with chemisorbed particles that prop- 
erly takes into account the infinitely extended nature 
of the system is possible by Green’s function techni- 
que.’@ It starts from the crystal orbital solution of the 
unperturbed periodic system and determines the per- 

D. Alternatives and Prospects 

The computer demands of ab initio CO calculations 
may lend an appealing appearance to semiempirical 
methods in the field of solid-state problems, though 
they are almost completely abandoned now in structure 
determinations and total energy calculations for mole- 
cules. Indeed, CO variants were developed for most 
semiempirical methods popular in quantum chemis- 
try,% e.g. EHT,13J”5f206 CND0/2,207 and MIND0/3,208ym 
They are certainly of some use for qualitative purpose, 
particularly in the hands of scientists with good intu- 
ition (the exciting EHT s t u d i e ~ l ~ ~ ~ ’ ~  from Hoffmann’s 
group are a prominent example). But it is also not 
surprising that semiempirical methods that rely on the 
neglect of differential overlap approximation such as 
CNDO, INDO, NDDO, and their modified variants 
MIND0/3 and MNDO cannot make reliable structure 
predictions for solids, which frequently contain heavier 
elements or exhibit unusual bonding situations. An- 
derson’s ASED method,211 an EHT-type approach up- 
graded by an atom-atom repulsion potential, might be 
more successful in this respect. It proved capable of 
making interesting structure predictions in large cluster 
studies of surface complexes,212 and it should be in- 
teresting to see its performance in CO studies. 

The vast number of periodic calculations on bulk and 
surface properties of solids indicates that the methods 
of solid-state physics may offer a possibility to bypass 
the computational bottleneck of ab initio techniques. 
All these methods rely on the local density approxi- 
mation (LDA; cf. section II.E).14915 In the past, a broad 
variety of semiempirical methods was available for the 
calculation of band  structure^.^^*^^ It was sufficient to 
get the one-electron energy levels with an accuracy of 
a few tenths of an electronvolt. This means, however, 
that the error of the total energy was several times 
larger. 

In recent years the accuracy of density functional 
methods has been pushed up to a level that is sufficient 
for total energy, structure, and force constant calcula- 
tions.21i22 These methods replace the core electrons by 
nonempir ical pseudopotentials and expand the one- 
electron functions for the valence electrons into a basis 
set of plane waves instead of atomic like functions with 
great computational advantages (by their very nature, 
however, plane waves are of no use for molecules). The 
LDA one-particle equations (11.38) can be effectively 
solved in momentum space, and when the derivatives 
of the energy are evaluated analytically with respect to 
the nuclear coordinates, only the so-called Hellman- 
Feynman term appears, but not terms connected with 
the derivatives of the basis functions as in LCAO-type 
methods.22 The latter form is the most time-consuming 
part of the gradient evaluation in molecular ab initio 
 calculation^.^^ H o l ~ s c h u h ~ ~ ~  compares the results of 
different pseudopotential calculations for silicon and 
studies the dependence on the particular density 
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TABLE 5. Periodic Hartree-Fock (HF) and Local Density Approximation (LDA) Results (Units: Lattice Parameters ( a ,  c )  
pm; Cohesive Energy (Ee& kJ/mol; Bulk Modulus ( B ) ,  Mbar) 

Hartree-Fock method local density approximation 
crystal parameter GTF" obsdb LCAOC G T F ~  PWe 

Be a 

C a 359h 
Ecoh 549h 
B 5.9oh 

C 

Si a 558"' 
Emh 247"' 
B 1.25"' 

BN a 359p 
Emh 95w 

323' 
364f 

355' 
485' 

542" 
241" 

4.38' 

1.20" 

8059 

229 
358 

357 
709-735 

4.43 
543 
447 

3629 

1.14-1.27 

0.99 

1255 

358' 356k 
753' 756k 

5350 
496" 

4.3Ik 

1.13O 
365' 

1235' 

2258 
3578 

360' 
730' 

545' 
450' 

1.378 

4.41' 

0.98' 

"Crystal orbital method employing a basis set of contracted Gauss-type functions. *For references to experimental work, see quoted 
theoretical papers. Calculations within the LDA employing a GTF basis set. 
ePseudopotential calculations within the LDA employing a basis set of plane waves. 'Reference 164. 8Reference 219. *Reference 145. 
'References 194 and 195. jReference 220. Reference 217; not fully self-consistent. 'Reference 221. "'Reference 146; STO-3G basis set. 
"Reference 146; STO-3G for Is and 2sp orbitals and STO-4G for 3sp orbitals. OReference 219. PReference 196. qReference 222. 'Reference 
223. 

Numerical basis set (discrete variational method). 

functional adopted (cf. section 1I.E) and on the number 
of plane waves in the basis set. He shows that up to 
about 300 basis functions may be necessary to obtain 
converged results, even for a crystal as simple as Si. 
This is a great disadvantage of the method. Another 
one is that the localized core electrons cannot at  all be 
described by plane waves. Therefore, also in solid-state 
physics, methods have been developed that solve the 
one-particle LDA equations in real space for a basis set 
of GTF or STO (LCAO-GO-LDA methods). There are 
a number of review articles19-22i214 and a recent con- 
ference volumell (see, in particular, the contributions 
by Martin,215 Kunc,216 Nielsen and Martin,218 and 
Louie217) providing details of modern solid-state LDA 
calculations employing basis sets of both plane waves 
and atomic like functions (GTF, STO), for total ener- 
gies, energy derivatives, force constants, and structures. 
Table 5 contains a small selection of applications and 
makes comparison with ab initio calculations (Results 
of both approaches for ionic materials are presented in 
Table 15.). 

Table 5 marks the point where the lines of significant 
technical developments in solid-state physics (LCAO- 
GO-LDA methods) and in quantum chemistry (ab initio 
LCAO-GO methods) come very close to each other as 
Scheme 1 illustrates. The scheme shows also that 
molecular applications of LDA methods have their or- 
igin in LCAO-type solid-state approaches or their 
predecessors, LCAO-type band structure calculations. 

When results of ab initio HF calculations are com- 
pared with those of LDA methods and with observed 
values (Table 5), a picture emerges for these periodic 
treatments that we know from studies on molecules 
(section 11). Both approaches make reliable structure 
predictions. Cohesive energies are poor for the HF 
model and much better for the LDA methods. As far 
as electron excitation energies are concerned ("band 
gap"), HF theory yields typically too large values (by 
about 20%) while LDA methods yield values that are 
reduced by as much as 50%.22 This is not only a 
practical problem, but, more seriously, there is no 
theoretical justification for getting excitation energies 
within the LDA.22 The recent review of Srivastava and 
Weaire22 mentions some further, presently unsolved 
problems of the LDA methods. But it also points to 
promising developments toward a unified approach to 

SCHEME 1. Total Energy Calculations 

molecules periodic solids 
(domain of chemists) (domain of physicists) 

LCAO LCAO-CO methods  
HF plus correlation HF (plus correlation) 

(Tables 2 and 3) (Table 5 )  

t 
L C A O - L D A  - LCAO-CO-LDA 

t 
plane waves-LDA 
(pseudopotentia I )  

self-consistent solutions of the one-particle equations, 
structure determination, and molecular dynamics 
within the LDA. In summary, as with molecules, the 
LDA is without doubt a very useful and, for some types 
of solids, a particularly well-adapted approximation. 
But also with solids the exact form of the density 
functional is unknown; therefore, LDA methods will 
face limits beyond which they cannot be improved. It 
is clear that both solid-state LDA and ab initio GO 
methods are only at  the beginning of producing results 
on more complex solids, but it is also clear that we 
cannot do without the ab initio GO methods. 

In ab initio calculations on solid-state problems there 
is also no alternative to pushing forward the GO tech- 
niques since this is the only way to exactly take into 
account the infinite extension of the system. Moreover, 
GO results are of paramount importance as benchmarks 
to assess the approximations connected with the cluster 
approach. 

The situation is paradoxical in so far as in ab initio 
crystal orbital calculations very sophisticated techniques 
seem to be unavoidable to achieve balanced approxi- 
mations, while molecular models or clusters making 
implicitly very drastic cutoffs of the interactions with 
the surroundings are apparently rather successful. 
While it is only today that minimal basis set crystal 
orbital calculations for quartz are being completed,165 
molecules as small as orthosilicic acid or disilicic acid, 
Si(OH)* and (HO),SiOSi(OH),, tell us much about 
structure and properties of silica (sections IV and VII) 
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ization of the orbitals of a crystal in a limited region can 
be achieved. The answer is different for different types 
of solids and depends also on the particular way the 
model is chosen, i.e. the way the cutout is made. It goes 
without saying that a model is the more realistic the 
larger it is. What we are interested in in this section 
are rules that allow one to find the best possible model 
of a given size, or better to say of a given amount of 
computational work. This section does not provide a 
complete list of the numerous suggestions made in lit- 
erature, but rather attempts to present them in a sys- 
tematic way and to rationalize them from common 
principles. In paragraphs 1V.C-E different aspects of 
molecular modeling are discussed (embedding tech- 
niques, Madelung potentials, saturator pseudoatoms). 
Though in each paragraph for illustration reference is 
made to those types of solids for which the respective 
model aspects are dominant (i.e., metals, ionic and 
molecular crystals, and crystals with covalent bonds), 
the rules emerging from all of these paragraphs should 
be considered when designing an optimal model for a 
specific problem. Section 1V.F deals with possible im- 
provements of a model by proper handling of its geom- 
etry. 

When the results of a specific calculation on a mo- 
lecular model or a cluster model are compared with 
experimental results for the infinite solid, any deviation 
observed can be due to shortcomings of the model or 
approximations made in the method applied. This 
problem is addressed in the final section. 

0 
Ill e H 

Figure 2. Clusters and molecules as models. 

and allow one not only to use reliable basis sets but also 
to take electron correlation into account at least a t  a 
simple level (MP2).130J31 

But, just this paradoxon gives reasonable hope that 
finally quantum chemists will learn how to make effi- 
cient and balanced approximations for two-electron 
integrals between a reference cell and its surroundings 
in solids. There is no doubt that in coming years the 
list of systems treated by ab initio crystal orbital 
methods will extend and the theoretical level will im- 
prove (larger basis sets, inclusion of electron correla- 
tion). 

I V. Chemical” Approach: Molecular Methods 

A. Introduction 

The physical approach to the electronic structure 
problems of solids contrasts sharply with the chemist’s 
feeling that local interactions dominate structure and 
properties of molecular systems. Such feeling is ex- 
pressed in terms like functional group and homologous 
series. Hence, it is very appealing to replace the infinite 
solid, which is difficult if not impossible to treat 
quantum chemically, by finite models of the sites of 
interest. Intuitively, cutouts from the bulk or the 
surface are made and treated like molecules. In the case 
of metals, these cutouts are clusters of metal atoms and 
are called cluster models. When cutouts are made from 
solids with directed bonds, the “dangling” bonds that 
would connect the cutout with the bulk are intuitively 
saturated by hydrogen atoms to yield hypothetical or 
real molecules as models. In this case we prefer the 
name molecular models (Figure 2). The concept of 
cluster or molecular models proved very fruitful. It 
reduces the problem of electronic structure and local 
geometry of the solid to the common problem of de- 
termining the geometry and electronic structure of 
molecules, it reduces the problem of the bonding of 
molecules or atoms on to surface sites to the problems 
of molecular reactivity and intermolecular interactions, 
and it reduces the problem of surface reactions to the 
problem of potential surfaces for reactions between 
molecules. 

The molecular approach to solid-state and surface 
problems has met undisputed success, and the reader 
may expect this review to just give an account of its 
achievements and to consider its limitations for dif- 
ferent types of materials. This is done in sections V- 
VII. However, having in mind the difficulties of a 
nonempirical crystal orbital calculation, one may won- 
der why the molecular approach work so well and when 
this is the case. The heart of molecular models is a 
localized description of the electronic structure of solids. 
Therefore, we start (section 1V.B) with analyzing the 
conditions under which and the extent to which local- 

B. Conditions of a Localized Description 

Rules for the best possible choice of a model for a 
given site of a solid become obvious when an analysis 
is made for approximations involved in the process of 
modeling the infinite solid by finite systems. What we 
would like to do is to solve HF-type equations-possibly 
slightly modified ones-for a finite model only. What 
we would like to achieve is that the orbitals localized 
in this limited cutout are also approximate solutions 
of the HF equations for the infinite solid. This problem 
of localization is well-known in quantum chemistry. 
The solutions of the HF equations of a given system are 
determined only up to a unitary transformation among 
the occupied orbitals. Use can be made of this freedom 
to pass from the delocalized molecular orbitals obtained 
as canonical solution of the HF equations to localized 
orbitals corresponding to a chemist’s idea of atomic 
cores, lone pairs, bonding electron pairs, etc. Note that 
these orbitals are still orthogonal and, therefore, not 
stictly localized, but they show small coefficients (tails) 
on atoms outside the localization region. The total 
energy, the one-electron density function p,  and all 
properties calculated from the n-electron determinantal 
wave function are not affected by this transformation. 

Let us consider the conditions under which and the 
extent to which localization in a limited region of a solid 
can be achieved. The solid is divided into a cutout 
(index C )  and its surrounding (index S). Solving the 
HF equations for the solid 

FI,L = #E (IV. 1) 

an infinite set ic/ of k-dependent crystal orbitals t)i(rl) 
is obtained, which extend over the whole solid. In 
section I11 the wave vector k is used to label the orbitals, 
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charge clouds (charge penetration contribution) is 
combined with the exchange potential to give the 
short-range part. 

The localization potential, p(r) vS,sr(r) p(r), acts in 
the following way on orbitals within the occupied sub- 
space of the total system: Electrons in orbitals that are 
not localized in the cutout are not stabilized (because 
the potential vsyw(r) that would do this is canceled by 
the localization potential) and are shifted to higher 
energies, while the electrons in orbitals localized in the 
cutout are affected only slightly (because vSpsr and, 
consequently, its screening effect is weak for them). 

Passing to the algebraic approximation (section 11), 
all the orbitals are expanded in terms of the full basis 
set x of the infinite system 

(92, (bs) = X(CC, CS) (IV. 12) 

and the matrix form of the Adams-Gilbert equations 
(IV.4) 
(FcJr + Wsr - SRVSpsrRS)Cc SCcECJr (IV.13) 

has infinite dimensions (SR is the algebraic repre- 
sentation of the projection operator p) .  

Although eq IV.4 and IV.13 would yield orbitals for 
the infinite solid that are localized in a limited cutout 
of it, no real progress has been made in deriving these 
equations. They still involve all the interactions with 
the surroundings (which in section I11 were shown to 
be very difficult to treat). Yet we need the complete 
solution for the total system to set up the one-electron 
density p 

p(r) = cpc(ac+ + ‘ps‘ps+ (IV.14) 
and the orbitals cpc, albeit localized, have tails in the 
surroundings that express the orthogonality with the 
orbitals localized thereon. That we have to know the 
exact solution for the perfect solid is the major obstacle 
with all “embedding” procedures (see, e.g., ref 186). 
Nevertheless, equations of type (IV.4) or (IV.13) can be 
a basis of efficient embedding techniques provided the 
surrounding is described by a simpler wave function 
than the cluster (vide infra, section 1V.C). 

What we are ultimately interested in when trying to 
find rules for an optimal choice of a model are the ap- 
proximations involved in passing to equations of type 

F#& = SccCccE& (IV. 15) 

In these equations the expansion of the orbitals of the 
cutout C extends over a subset xc of CGTF assigned 
to this model system only, and the short-range potential 
of the neighboring cells giving rise to the hu e number 

are submatrices of Fcpk and S appearing in eq IV.13; 
of two-electron integrals is suppressed. Fcb cei, and ScC 

but here it is convenient to absorb k into the index i 
running now over all the orbitals of the solid. Moreover, 
a special matrix notation proves which 
considers $i(rl) as element of a matrix with continuous 
(the electron coordinate rl) and discrete (the orbital 
index i) variables, $(rl, i). Correspondingly, F and E 
are matrices of type F(q, rl) and E(i, j ) .  The unitary 
transformation into a set cp of localized orbitals is given 
by the matrix T: 

cp = $*T (IV.2) 

We are interested in a transformation that yields or- 
bitals cp, a subset of which, cpc, is localized in the given 
cutout (and, approximately, satisfies HF-type equations 
of this model): 

CP = (CPC, CPS) = $0‘0 Ts) (IV.3) 
Already at  this point we have made an important as- 
sumption in our model, namely that a definite number 
of orbitals with a definite number of electrons can be 
attributed to it (assumption 1). Localization, in general, 
can be achieved by adding a localization potential to 
the Fock operator. The orbital set (cc, which we are 
seeking, can be obtained by solving the Adams-Gilbert 
e q ~ a t i o n ~ ~ ~ s ~ ~ 5  

(FcJ’ + Wsr - pVS*srp)cpc = cpcEC~I’ (IV.4) 

with 

EC’Ir = cp~+FChcp~ (IV.5) 
and 

P = $*+ (IV.6) 
These equations describe a model system consisting of 
the electrons and nuclei of the cutout that feel the 
long-range (lr) potential of the surroundings, 

F+r) = F ( r )  + vSk(r) (IV.7) 

The short-range (sr) potential of the surroundings, vsp, 
is screened by the localization operator p(r) vSp(r) p(r), 
which acts within the subspace of occupied orbitals of 
the total system. Use was made of a division of the 
potential suggested by Kunz and Klein? 

(IV.8) 
It is based on the partitioning 

(IV.9) 
where FC(r) includes, besides the kinetic energy oper- 
ator, interactions inside the cutout only, while vS(r) 
describes the potential due to the nuclei, vQS, and the 
electrons, js(r) - ks(r), of the surroundings: 

vS(r) = 4 ( r )  + js(r) - P ( r )  (Iv.10) 
This Hexternal” potential is further divided into 
short-range contributions, decaying exponentially with 
the distance, vspsr(r), and long-range contributions, 
vSJr( r): 

(IV.11) 
Separation of both terms is achieved by expanding the 
Coulomb potential, js(r), in a multipole series. The 
multipole contribution, together with the potential of 
the nuclei, forms the long-range potential, while that 
part of the Coulomb potential due to the overlap of the 

F(r) = Ptk(r) + VStw(r) 

F(r) = F ( r )  + vS(r) 

@(r) = @+) + vSiw(r) 

e.g. 

with 

F8t! = (xclF’kxc) 

+c = xcccc 
and 

The matrix equations (IV.13) reduce 

(IV.16) 

(IV.17) 

(IV. 18) 

to block diagonal 
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form and, consequently, to eq IV.15 when the non- 
diagonal blocks Fcs and ScS disappear. This happens 
when the differential overlap, Xp(r l )  x,(rl) drl, and the 
resonance integrals, (p lh lu) ,  are negligible (p and u label 
CGTFs on atoms of the cutout and of the surroundings, 
respectively). At this level of approximation also the 
term V$r vanishes as the short-range potential depends 
on overlap. These are the conditions for which eq IV.15 
is an approximation to eq IV.13. That means the so- 
lutions Ccc of eq IV.15 defined for a limited model of 
the solid are as well approximate solutions of the HF 
equations of the infinite solid (eq IV.13) if the cutout 
is made as follows: (1) A fixed number of electrons can 
uniquely be assigned to it. (2) A subset of CGTF can 
be attributed to it. (3) Differential overlap and reso- 
nance integrals between its orbitals and those of the 
surroundings are negligible. I t  is obvious that these 
requirements can be met only approximately. Their 
significance is that they may guide us to make a cut that 
yields the best possible model of a given size for a given 
solid. Roughly speaking, the model is to be chosen such 
that a definite number of electrons can be assigned to 
a subset of atomic orbitals of the solid in a way they 
interact as little as possible with the electrons of its 
surroundings. How this is achieved for different types 
of solids will be discussed in the following paragraphs. 
For each type of bonding a particular aspects of the 
embedding problem will be stressed. Although metals 
are not the main interest of this review, we start with 
a short account of embedding techniques designed for 
them because they are generally applicable. After a few 
comments on peculiarities of ionic solids and molecular 
solids, we pass to solids with significant covalent bond 
contributions, the materials of main interest here. 

C. Metals: Embedded Clusters 

The above approximations are not justified for met- 
als. For them, delocalized electronic states are char- 
acteristic, originating from the strong overlap between 
the valence orbitals of closely packed atoms. Hence, 
the tails on atoms of the surrounding that belong to the 
orbitals of the cluster region, pc, must not be neglected, 
and passing from eq IV.13 to eq IV.15 is a heavy ap- 
proximation. Large clusters of metal atoms will be 
necessary to successfully model bulk or surface sites of 
metals, For example, to study the interaction of H 
atoms with bcc iron,227 clusters of up to 66 Fe atoms 
were used, but cluster edge effects were still sensible. 
To be able to use sufficiently flexible wave functions 
for the site of interest (or, for a given quality of wave 
function, to be able to study models that are large 
enough), the model is divided into two parts: the in- 
terior region constituted by the atoms at  the site con- 
sidered, and the exterior part, which isolates the interior 
from the physically incorrect boundary. The idea is to 
treat the exterior part in a more approximate way. 
However, we cannot simply employ basis sets of dif- 
ferent quality on the atoms of the interior and exterior 
parts of the model (as, e.g., done in ref 227) since in any 
variational calculation this will lead to undesirable su- 
perposition effects. To avoid artifacts, one of the fol- 
lowing measures of “embedding” can be taken (listed 
in order of decreasing demands): (1) explicit localiza- 
tion as described by eq IV.3;22*239 (2) frozen orbital 
approximation for the exterior region; (3) use of effec- 

tive core potentials for exterior atoms;240.241 (4) re- 
placement of all the electrons of exterior atoms by 
pseudopotentials. 

Localization of “cluster” orbitals qc (analogous to eq 
IV.l-14, but including a separate transformation step) 
is the essence of Whitten’s t e c h n i q ~ e . ~ ~ ~ ~ ~ ~ ~  Let us 
consider the consecutive steps of his procedure for the 
specific case of H2 adsorption on 

(1) As a model of the “infinite” solid surface, a rather 
large cluster is used, denoted Ti3Jl9-12-7), which con- 
sists of 19 atoms in the surface layer, 12 atoms in the 
second, and 7 atoms in the third layer. The SCF 
equations (eq IV.l) for this model plus adsorbed H, are 
solved employing a minimal basis set of 4s and 1s or- 
bitals on Ti and H, respectively. 

(2) An interior region of the model is chosen: the 
seven central metal atoms of the surface layer next to 
the adsorption sites plus the adsorbed H atoms. The 
remaining 31 Ti atoms represent the surrounding. To 
single out from the 20 occupied orbitals those that are 
localized in the adsorption region (index C in 1V.B) we 
have to find a unitary transformation T. We know from 
section 1V.B that a short-range potential is needed that 
acts either on the interior part or on the surrounding. 
Whitten makes use of the exchange potential k(i)  de- 
fined by the m(i) atomic basis functions p,, of the interior 
part: 

Transformed orbitals (cf. eq IV.2) 
(Pk = CXlTik (IV.20) 

1 

are obtained that maximize the exchange energy Yk with 
the orbitals of the interior atoms: 

Y k  = C(kPl&) (IV.21) ,, 
In the present example, the nine occupied orbitals with 
the largest y values are assigned to the “cluster” set qc 
(cf. section IV.B), while the remaining 11 orbitals define 
the fixed electron distribution of the environment (set 
pS). I t  is important to keep in mind that the orbitals 
pc have tails on atoms of the exterior region while those 
of the environnients set ps have tails on the interior 
region. These tails reflect significant properties of a 
metal and cannot be neglected. I.e., for metals the 
division of the electronic space into subspaces of the 
“cluster” electrons and of the “surrounding” electrons 
does not coincide with the “geometric” division of the 
whole assembly of atoms into an interior and an exterior 
region. 

(3) The “cluster” basis set can now be improved by 
adding to the nine localized orbitals assigned above to 
the site of interest further basis functions centered on 
the atoms of the interior region. A second s-type CGTF 
is added to the valence basis sets on Ti and H atoms; 
moreover, p polarization functions are added to the 
latter. It is also at  this stage that the 3d constraint is 
removed and 3d orbitals are included (localization of 
d orbitals is not necessary since they overlap only 
weakly). For this extended basis set another SCF and 
a CI calculation are made. To enhance convergence of 
the CI expansion, a second localization is performed in 
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TABLE 6. Small-Cluster and EmbeddingClueter Results for Hydrogen C h e m i s ~ r p t i o n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  (SCF Interaction Energies, 
kJ/mol: Negative Values Denote Exothermic Processes) 

~ ~ 

embedded cluster’ small cluster’ system 
H2 on Ti(OOOl)b3231 Ti7( 7)-H2 Tilo(7-3)-Hz {Ti7-H2)/Ti38( 19-12-7)-H2 

site 1-2c -30 +40 
site 1-3c -175 -220 -50 
site 1-4c -200 -260 -40 

top -100 -185 -350 
interstitial -90 -450 

H on CU(IOO)~~~  Cug (4-5)-H (Cug-H)/Cuz5( 12-9-4)-H 
4-fold hollow site -320 -190 

H on a Ti ad-atom on a 3-fold site on Ti(0001)95~236 Ti-H Ti,( 1-3)-H {Ti4( 1-3)H)/Tizo(l-12-7)H 

The following notation is used: (interior part)/total model (number of first-layer-second-layer-third-layer atoms). Energies with re- 
sDect to undissociated H,. Cf. Fimre 3. 

F igure  3. Models used to study the dissociative H2 adsorption 
in different pairs (1-2, 1-3, 1-4) of 3-fold hollow sites on the T i  
(0001) The H atoms (top) are 132 pm above the 
surface plane, and the H-H distances for the 1-2,l-3, and 1-4 sites 
are 170,295, and 341 pm. The figure shows the TiI0(7-3) cluster 
with seven T i  atoms in the surface layer and three T i  atoms in 
the second layer. 

the same way as described above. Only in this third 
step is a computational advantage taken as the “cluster” 
orbitals expanded into a good basis set are obtained in 
the potential of the fixed “surrounding” orbitals de- 
scribed by a rather primitive basis set. The reduction 
of basis set size achieved this way is substantial. The 
calculation of the (embedded) Ti,( 19-12-7)-H2 cluster 
involves altogether 60 orbitals (40 s, 9 s’, 2 p, 9 d). With 
the full double (basis set on all Ti atoms, this number 
would increase up to 91 (40 (s + s’), 2 pl, 9 d). 

The purpose of the localization may be summarized 
as follows: (1) It introduces the delocalized character 
of the valence band electrons into a subspace involving 
the electrons of the site of interest. (2) It insulates the 
interior part of the model from the crudely described 
exterior part and the physically incorrect boundary. 
Table 6 shows the significant effect the embedding 
procedure has on computed adsorption energies for 
hydrogen. In the larger (embedded) clusters they are 
strongly reduced. This can be naively explained as 
follows: In the small (one- or two-layer clusters) bonds 
connecting the surface atoms with the bulk are cut, and 
this makes these atoms more free to bond with hydro- 
gen. On interstitial positions, however, stronger bond- 
ing of hydrogen is predicted for embedded clusters236 
than for the free Ti4 cluster.234 The embedding tech- 
nique described above has been employed in studies of 

TABLE 7. Effect of Second-Layer Atoms on Binding of CO 
on Metal Atoms240 (Units: Equilibrium Distances (Re) ,  pm; 
Interaction Energies ( A E ) ,  kJ/mol; Negative Values 
Indicate Stabilization) 

M = Cu M = Ni M = A1 
( x  = 4) ( x  = 4) ( x  = 3) 

model Re AE Re hE Re AE 
M-CO (205)” 43 (202)’ 43 (198)” 20 
M,M-Cob 206 -46 204 -49 199 -22 
M,M-CO 205 -43 202 -54 198 -23 

‘The potential curves are repulsive. Energies are given for the 
equilibrium distance of the two-layer -cluster. Effective core po- 
tentials on the x second-layer atoms M. 

the adsorption and dissociation of H2 on titani- 
um,230,231,236 copper:32,233 and titanium-copper alloy238 
surfaces. In addition, hydrogen bonding on interstitial 

and below-surface positions236 has been inves- 
tigated. There is also some work on CO bonding on the 
Ti(0001) surface237 and on adsorption of atomic hy- 
drogen on the Li(100) bcc surface.235 

While Whitten’s technique has been rarely used 
(certainly because it requires some investment in pro- 
grams), the third of the above-mentioned possibilities 
to deal with exterior atoms, use of effective core po- 
tentials, requires only a program feature that becomes 
more and more standard in programs of molecular 
cal~ulations.~~2 Computer time savings are substantial, 
and effective core potentials have become very popular 
in metal cluster s t ~ d i e s . ~ ~ ~ , ~ ~ ~ p ~ ~ ~ - ~ ~ ~  In a study of CO 
adsorption on metal surfaces (cf. Table 7) the calcula- 
tion on the Cu5(l-4)-CO model involves 221 basis 
functions. Although only 96 of them remain when ef- 
fective core potentials (replacing also d electrons) are 
introduced on the four second-layer metal atoms,240 the 
results are hardly affected. In contrast, complete neg- 
lect of second layer atoms in the minimal Cu-CO model 
fails to yield any binding at  all while only a further 20 
basis functions are saved. The use of effective core 
potentials for the environment metal atoms made it 
possible to study even larger models involving as many 
as 34 Cu atoms.241 The central Cu atom was described 
by an all-electron basis set while for all other atoms of 
the cluster only the 4 sp electrons were included. The 
resulting interaction energies for on-top adsorption of 
CO (R(Cu-C) = 196 pm) show a strong oscillation with 
increasing cluster size (kilojoules per mole, negative 
values indicate stabilization): CUI( 1)-CO, +48; Cu5- 

-27; C~~~(9-16-9)-CO, +53. A careful analysisZ4l re- 
vealed that the oscillation is due to electrostatic and 
substrate polarization contributions while others such 

(1-4)-CO, -43; C~,o(5-4-1)-CO, +39; C~14(5-4-5)-CO, 
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as charge transfer and CO polarization are nearly con- 
stant. Most importantly, relations between the elec- 
tronic structure of the bare Cu, cluster and its inter- 
action with CO have been established making it possible 
to predict whether this interaction will be attractive or 
repulsive. It is believed that these conclusions apply 
to adsorbate-metal systems other than Co-Cu(100) as 
well. 

These findings, although being a sign of warning, do 
not contradict studies on chemisorption that employ 
small clusters, but rather point to the urgency of a 
careful selection of the model and a thorough analysis 
of the results. 

In spite of all difficulties in getting converged results 
from cluster studies one should remember (1) that 
different properties have different demands on cluster 
size and (2) that minimal models of surface complexes, 
even those involving a single metal atom, may yield 
useful results on the nature of bonds involved87J35>247-249 
or on the ability of some methods to describe certain 
types of surface bonds properly.82~250-252 Theoretical 
results for metal atom clusters and their relations to 
bulk metal and surface properties have been recently 
reviewed in this journal.38 

D. Molecular and Ionic Crystals: Madelung 
Potentials 

For molecular crystals or ionic crystals it is as easy 
to choose models that conform to eq IV.15 as it is dif- 
ficult for metals. In clusters of ions or molecules elec- 
trons are well localized on the individual species. 
Overlap between orbitals on different species is weak, 
and the interactions between the species fall into the 
category of intermolecular forces. The only point de- 
serving attention is the way the potential of the sur- 
rounding species that appears in the Fock operator of 
the model is approximated. Equation IV.ll implies 
that the long-range part of the electrostatic potential 
is used. The simplest approximation replaces vs,lr by 
its leading contribution, the Madelung term, which 
describes the interactions with point charges located at 
the atoms or ions of the environment: 

(S) 

i 
@Jr(r) VM(r) = &/(r - ri) (IV.22) 

Implementation of this embedding procedure is com- 
putationally cheap (it requires calculation of additional 
one-electron integrals, only) and straightforward. The 
only questions to be answered are as follows: (1) How 
large should be the point charge array? (2) What are 
the optimum values for the point charges? 

(1) The finite array of charges should reproduce the 
exact Madelung potential that can be calculated by the 
Ewald method253 on all atoms on the explicitly treated 
  luster.'^^^^^^ This is reached when the chosen array 
reflects properly the symmetry of the crystal and when 
appropriate fractions of charges are put on its surface 
and corner positions ("Evjen" see also ref 258). 
This also helps to keep the model neutral. However, 
there is no guaranty that the Evjen model yields better 
agreement with the exact Madelung potential than the 
simple unit charge m 0 d e 1 . ' ~ ~ ~ ' ~ ~  A recommended me- 
thod is to adjust the charges of the point ions of the 
outermost shells of the array in order to reproduce the 
Madelung potential for the infinite ~ r y s t a l . ' ~ ~ - ' ~ ~  

TABLE 8. Polarizabilities of Ions (a:) in Different 
Environments266J" 

model" SCF correlation total 

{Na+JP (NaF) 0.945 0.058b 1.003 
Ag+, free 8.26 0.36' 8.62 
IAg+lp (AgF) 8.73 (9.66Id 
F-, free 10.65 5.52b 16.18 
{F-JP (LiF) 7.30 1.78b 9.08 
{F-(Li+)6lP (LiF) 5.39 O.7gb 6.18 

2-p  MgO) 21.2 5.3 26.5 
~~2&!g2+)~]p (MgO) 10.9 1.4 12.3 

- 
Na+, free 0.944 0.058b 1.002 

(4.45)e (5.24)e 

" { J P  denotes embedding by a point ion array. bMP2. 'CI-SD. 
Estimate obtained by adding effects of correlation, point ion 

field, and relativistic corrections.267 e Full Boys-Bernardi correc- 
tion. 

(2) Only for purely ionic crystals like alkali halides, 
MgO, NiO, etc. is the use of full ion charges justified. 
For crystals containing polyatomic ions, e.g., NaOH,259 
for molecular crystals, e.g., solid HCOOH, NH3, and ice, 
or for partially covalent solids, e.g., SiOz or A1203, 
fractional charges on the atoms are needed. Frequently, 
they are determined from a Mulliken population 
analysis. This, however, is not the best choice. Since 
we are interested in a set of charges that reproduces as 
closely as possible the long-range potential (eq IV.22), 
so-called "potential-derived" (PD) are 
superior. They are determined such that they give the 
best fi t  to the electric multipole moments and/or the 
molecular electrostatic potential of the polyatomic ion 
or molecule considered. This definition depends neither 
on the basis set size nor on whether the basis functions 
are centered on atoms or elsewhere in space. On the 
contrary, the Mulliken partitioning becomes more and 
more arbitrary as the basis set is extended beyond 
minimum. E.g., diffuse functions may have their radial 
density maximum closer to a neighboring atom than to 
the atom on which they are centered. In the study of 
solid NaOH, the charges in the group were chosen to 
reproduce its dipole moment. A hydrogen effective 
charge of +0.443e was obtained as opposed to a value 
of +0.259e from population analysis.259 Further exam- 
ples are given in section V. In any case, the process of 
charge determination should be repeated until the 
charges used for embedding and the charges derived 
from the wave function of the embedding cluster are 
self-consistent. 

The effect of embedding by a point charge array can 
be summarized as follows: (1) It has a negligible effect 
on cations unless they have d electrons. (2) It greatly 
stabilizes anions and compresses their charge clouds. 
(3) It enhances ionicities of bonds. Table 8 illustrates 
the first two points by recently calculated "in-crystal" 
polarizabilities of ions.265-268 Further results will be 
reported in section V. The calculations on clusters that 
explicitly include first neighbor ions show that for an- 
ions overlap compression of the charge clouds through 
its interaction with the charge clouds of its neighbors 
(i.e., the effect of the short-range potential) is impor- 
tant. Moreover, it follows from the study of Gutowski 
et al.269 on deformation of the orbitals of fluoride ions 
in LiF and NaF crystals that it is the exchange potential 
that brings about the improvement. Replacing the 
point charge term (eq IV.22) by the full Coulomb po- 
tential while neglecting exchange even deteriorates the 
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results. Obviously, the attractive penetration part of 
the electrostatic potential is partly counterbalanced by 
the repulsive exchange part. 

For some purposes, e.g., the calculation of the near- 
est-neighbor d i s t a n c e ~ ~ ~ p ~ ~ ~  or the description of defect 
electrons in ionic crystals,254*255*no~n1 it proved necessary 
to include s e ~ o n d ~ ~ ~ - ~ ~ ~  or even third and fourth neigh- 
b o r ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~  in the part of the model that is explicitly 
treated. Since the computational demands are very 
rapidly growing with the number of ions, simplifications 
are inevitable. An obvious possibility is to employ 
minimal basis sets for the outer ions hoping that this 
will produce only minor changes on the short-range 
potential felt by the inner ions. The danger of such an 
approach, namely that badly balanced basis sets may 
lead to intolerably large superposition errors, can be 
avoided, and the same goal reached when the electrons 
on the outer ions are described by frozen orbitals or 
even replaced by effective potentials (“total ion 
potentials” It has been also suggested to replace 
the short-range potential of a shell of neighboring ions 
by a spherical p s e ~ d o p o t e n t i a l ~ ~ ~  or to simulate it by 
additional point charges.267 

As far as molecular crystals are concerned, in a pio- 
neering study Noel1 and Morokuma have found only 
marginal effects of point ion arrays on the bonding of 
H3N-BH3.273 Generally, bond polarities increase on 
embedding a molecule in its crystalline environment. 
Examples are crystal water274p275 and NH3 in solid am- 
m ~ n i a . ~ ~ ~  In a study of the structure of the ammonia 

the (NH3)7 complex was used as a model. 
While the SCF calculation yields orbitals extending over 
all seven molecules in the cluster, after applying a 
localization procedure “in-crystal” orbitals for the cen- 
tral NH3 molecule are obtained. The five orbitals be- 
longing to this molecule are selected and their delo- 
calization tails on the surrounding six molecules ne- 
glected. Finally, all NH, molecules in the crystal are 
made equivalent by transfer of these quasi-orthogonal 
orbitals. In this way, a set of quasi-Wannier functions 
for the infinite crystal is produced. (Note the similarity 
of this procedure with Fink’s approach;278 cf. section 
VI.) 

E. Covalent Bonds: Saturator Atoms 

Throughout this section models of different forms of 
Si02, of alumosilicates and related oxides, as well as 
models of silicon will serve as examples. Their main 
purpose is to demonstrate ideas. Numerous other 
model calculations will be referred to only in the tables 
of sections V-VII. 

1. Fractional Atom Scheme 

In crystals with covalent or essentially covalent bonds 
the valence electrons cannot be assigned to specific 
atoms, but rather to bonds. To get a meaningful model, 
the cut has to be made such that bonding electron pairs 
are not affected. This rule is easily understood when 
applied to a basis set of hybrid orbitals. Let us consider 
the Si-0 bond in silica (Chart 1). A bond orbital is 
formed by the overlap of a Si sp3 hybrid orbital and an 
0 sp hybrid orbital, which should not be taken to lit- 
erally, however. What is important is that it is one of 
two equivalent orbitals available for bonding. The Fock 
matrix element between the two hybrid orbitals forming 

CHART 1. Fock Matrix Elements in Hybrid Orbital Basis 
for SiO, Tetrahedra in SiOz 

SiO, I 

\ 
hybrid orbitals 

Fock matrix elements 

the bond is substantial and should not be neglected. A 
qualitatively wrong picture of electronic states is ob- 
tained when bonds are cut. Owing to neglect of Fock 
matrix elements that bring about stabilization, artificial 
surface states of unpaired electrons are created 
(“dangling bond states”) that will be found within the 
gap between valence and conduction band. In contrast, 
overlap between different hybrid orbitals on the same 
atom is zero, and the coupling through Fock matrix 
elements is significantly smaller. Neglect of these in- 
traatomic interactions results in too narrow bands of 
one-electron levels. But this effect is not serious if one 
only makes sure that the model involves some complete 
atoms. 

Hence, a procedure is recommended that assigns 
bonding and lone electron pairs (and core electrons as 
well) either to the cluster or to the surrounding. A 
corresponding share of the nuclear charge of the atoms 
involved in a bond must also be ascribed to the cluster 
to minimize the electrostatic interactions, expressed by 
vs$ in eq IV.ll and IV.15, with the surrounding. Such 
a cut divides atoms into two pseudoatoms, one bor- 
dering the cluster and the other one belonging to the 
surrounding (Chart 2). Cutting a Si atom will leave 
a pseudoatom at the cluster’s border with one electron 
(effective nuclear charge 1+) in a sp3 hybrid orbital. 
One may even speak in terms of “a quarter of a Si atom” 
and, cutting correspondingly an 0 atom, of “a half of 
an 0 atom”. 

Such a “fractional atom” scheme has the advantage 
that the model preserves the stoichiometry of the solid. 
For example, model IV (Chart 2) has the composition 
Si4(Si/414 = Si02 and model V (Chart 2) the composition 
Si20(O/216 = Si02. Namely, nonstoichiometric models 
even may possess a different number of electrons than 
the same building unit within the infinite crystal if it 
is polar as, e.g., Si02. The reason is that charge sepa- 
ration occurs within bonds. Let us assume that for Si02 
0.25e is transferred within a Si-0 bond from the Si 
atom to the 0 atom. In the infinite solid having the 
brutto formula Si+(Oo.“)2 this gives 3 + (4 X 6.5) = 29 
valence electrons on a single Si+(0°.“)4 tetrahedron, and 
this is also true for models IV and V above. In an 
isolated Si04 tetrahedron (a nonstoichiometric model) 
the total number of electrons is fixed by the number 
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TABLE 9. Comparison of Atomic Charges” for Different Types of Molecular Models of SiOz (Cq = q(Si) + 2q(O) )  

geometry model ref nJ d s i )  %(obr) 2q(0,br) 4 d H )  
optimized H3SiOSiH3 284 4 . 3 9  0.82 -1.21 -0.68 

&(OH), 284 +0.33 1.31 -0.98 +0.66 
(H0)3SiOSi(OH)3 284 -0.06 1.36 -1.42 -1.00 +0.66 

optimized (transf“) Si(OSiH3), 285 +0.07 1.47 -1.40 
obsd (a-qumtz)‘ crystal orbital 165 0.0 1.40 -1.40 

H3SiOSiH3 284 -0.41 0.88 -1.35 -0.73 
Si(OH), 286 +0.38 1.54 -1.17 +0.78 
(H0)3SiOSi(OH)3 286 +0.11 1.52 -1.41 -1.17 +0.78 

Si(OH), (r  = 0162)d 286 0.00 1.45 -1.45 +1.44 
(HO),SiOSi(OH), (r = 0.62)d 286 0.05 1.45 -1.40 -1.45 +1.43 
Si(OH), (r  = 1.651)~ 286 0.01 1.45 -1.44 +1.44 
(HO)3SiOSi(OH)3 (( = 1.65)d 286 0.02 1.44 -1.46 -1.44 +1.44 

03Si-O-Si03~ 284 -0.98 0.74 -1.72 -1.92 

obsd (ferrierit, T2e) Si[O Si(OH)3]4 281 1.47 -1.40 -1.05 
obsd (ZSM-5, T12e) Si[O Si(OH)3]4 288 1.45 -1.45 -1.32 

Mulliken population analysis, SCF/STO-3G calculations. *Bond lengths and angles transferred from optimized structures of H3SiOSiH3 
and (HO)3SiOSi(OH)3, respectively; cf. ref 285. ‘Levien, L.; Prewitt, C. T.; Weidner, D. J. Am. Mineral. 1980,65, 920. dSlater exponent of 
1s functions for bordering siligens; see the text. e Crystallographic position of central Si atom; cf. ref 287 and 288. 

CHART 2. Rationalization of Molecular Modelsn 

Y Y  H I 
0 

H-0-Si - 0-H H-Si-0-Si - H 
I 

H 
I I 
0 H 
I 
H 

IV V 
Cutting atoms rather than bonds yields “a quarter of Si” and “a 

half of 0” pseudoatoms, which may be substituted by H atoms. 

each atom contributes, 4 + (4 X 6) = 28, and the charge 
distribution is Si+(Oo.25-)4. 

The idea of stoichiometric models has been even 
further advanced in the so-called “orbital 
stoichiometric” models of SiOp and y-A1203.279 Care is 
taken that in the cluster the same relations hold be- 
tween number and type of orbitals as in the perfect 
crystal. 

2. Hydrogens and Other Real Atoms 

There are several possibilities to implement the 
fractional atom idea into computational schemes. A 
very simple but powerful one is to replace the one- 
electron pseudoatoms by real atoms, i.e., to terminate 
the cluster by hydrogen atoms. We arrive at  (real or 
hypothetical) molecules as models. This idea has gained 
such great popularity not only because of the readiness 
of computer programs for molecular calculations but 
also because it is in line with chemists’ intuition. Al- 
though resting on some additional approximations 
compared with the pseudoatom concept, molecular 

models have the virtue of stressing connections between 
structures and properties of molecules in the gas phase 
and of or surface sites of solids (see also 
sections VI and VII). For example, although disiloxan 
(V), orthosilicic acid (IV), and disilicic acid (VI) are 
models for building units of silica frameworks, ortho- 
silicic acid can also serve as a model of surface hydroxyls 
on silica (section VII). 

VI 

To what degree hydrogen atoms are suited to replace 
bordering pseudoatoms depends on the solid considered 
and is a matter of experience. An assessment of the 
quality of a model by comparison with experimental 
data is complicated by systematic errors connected with 
any quantum chemical approach (cf. section 1V.G). For 
an ideal model, certain relations between the charges 
on different atoms hold. They provide “internal” 
criteria for the quality of a model. For models of SiOz, 
stoichiometry implies that 

1dSi)I = 21dO)I (IV.23) 

Moreover, if hydrogen atoms would play their role as 
“a quarter” of a Si atom perfectly 

4dH)  = d s i )  (IV.24) 

should hold and, in the disilicic acid model (VI) there 
should be no difference between “bridging” (br) oxygen 
atoms (having two Si neighbors as in the perfect lattice) 
and “nonbridging” (nbr) oxygen atoms (having one Si 
and one H atom as neighbors): 

q ( 0 n b r )  = q(Obr)  (IV. 25) 

Table 9 shows the atomic charges for different models 
of Si02 in a way that all entries in one row would be 
equal in absolute magnitude if the model were perfect. 
It is seen that hydrogen can substitute both Si and 0 
atoms in Si-0 bonds as it is able to accept electrons in 
Si-H bonds and to release electrons in 0-H bonds. But 
quantitatively, hydrogen is not efficient enough in doing 
so. This shows that the electronegativities of Si sp3 and 
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CHART 3. Termination of Molecular Models by 3SiO- and 
3SiF Groups 

divalent oxygen 
(quartz 1 

tr ivalent oxygen 
1 st I S  hovitel 

\\ / 
.SI. 7 -  

0 sp orbitals are different from that of the H 1s orbital 
(cf. paragraph E.4). 

Table 9 shows also results for the [03SiOSi03]6- 
anion. This modelm is obtained by a heterolytic fission 
of Si-0 bonds that connect cluster and environment 
(Chart 3). The bonding electron pairs are preserved, 
but they are accommodated in oxygen orbitals instead 
of in Si-0 bond orbitals. Although the oxygen orbitals 
are less stabilized, they are still within the valence band 
since nonbonding oxygen orbitals form the top edge of 
the valence band in SOz. Such anionic models are not 
stoichiometric. Their main disadvantage is their large 
charge and, consequently, their large electrostatic in- 
teraction with the surrounding. Embedding in a point 
ion array becomes mandatory. The model can be made 
neutral by transferring, in addition to an electron, also 
the corresponding share of nuclear charge (1+) from Si 
to 0. Formally, this creates an F atom as bordering 
atom while leaving an A1 atom in the surrounding 
(Chart 3). We obtain hexafluorodisiloxane, F3SiOSiF3, 
as a neutral In calculations one may also 
consider the use of, together with the 2 = 9 nucleus 
(fluorine), basis functions optimized for oxygen. Any- 
how, disilicic acid appears as the better founded model, 
and it is also more sound from the chemical point of 
view. 

3. Pseudoatoms: Effective Nuclear Charges 

In what follows we will discuss modifications on 
bordering hydrogen atoms that are still compatible with 
standard programs but make them more realistic. A 
very simple one is to change the effective nuclear charge 
on terminating hydrogen atoms. As an example we 
consider aluminum phosphate frameworks (composition 
AlP04), which are isoelectronic with SiOz frameworks 
and consist of alternating joined A104- and PO4+ tet- 
rahedra. Chart 4 shows a model that is the analogue 
of disilicic acid (VI) for SiOz.289 The pseudoatoms Xp 
and XAl represent “a quater of P+ and Al- atoms”, re- 
spectively. For them hydrogen atoms may be substi- 
tuted, but their effective charge should be modified to 
514 = 1.25+ and 314 = 0.75+, respectively. The re- 
sulting model, (H[0.75~0)3POA1(OH~1.z51)3, is neutral and 
has the proper stoichiometry. The charges on the 
central P-0-A1 atoms calculated for this model are 
notably different from those calculated for the naive 
(HO)3POA1(OH)3 model (cf. Chart 4). For the perfect 
lattice, neutrality a d  stoichiometry require 

q(AU + q(P) + 4q(Obr) = 0 

CHART 4. Molecular Models of Aluminum Phosphate 
Frameworks 

H H +I56 -059 +I15 
H[O7q HnZS1 +I47 -0.65 + I 2 7  

The model terminated by hydrogens yields 0.35+ for 
this sum. When the above modifications on effective 
nuclear charges are made, this improves to 0.16+.289 

The pseudoatom concept in general and the modifi- 
cations made on effective nuclear charges for termi- 
nating hydrogen atoms in particular me also compatible 
with the electrostatic valence rule.290 It defines the 
electrostatic bond strength of a cation as the quotient 
of its (formal) electric charge and its coordination 
number. Hence, the bond strength is +1 for Si in SiOz 
and +3/4 and +5/4 for AI and P, respectively, in A1PO4 
The rule says that an ionic lattice is stable if the formal 
electric charge of an anion (with reversed sign) is equal 
to the sum of the bond strnegths to all cations sur- 
rounding it. This sum is 2 in SiOz and also in AlP04 
(+3/4 + 5 /4  = 2). It is retained for all oxygens of the 
models introduced above for Si02 However, when the 
above AlP04 model is naively terminated by hydrogen 
atoms (bond strength +l), the bond strength sums for 
nonbridging oxygen atoms are +1.75 and +2.25 in the 
A10, and PO4+ tetrahedra, respectively. Only for the 
modified H[0.751 and H[1.251 atoms is the sum +2 for all 
oxygen atoms of the model. 

4. Pseudoatoms: Variation of Orbital Exponents 

The fractional pseudoatoms at the border of a cutout 
are defined by the following parameters: effective nu- 
clear charge, number of electrons, and type and expo- 
nent of the valence orbital. In previous paragraphs we 
have dealt with the first two of them; now we turn to 
the orbitals itself. In the beginning we will stick to the 
assumption that the valence orbitals can be approxi- 
mated by a 1s-type Slater orbital. (In practice, it is a 
1s-type CGTF; see section 11.) The atomic charges 
given in Table 9 show that the 0-H bonds that ter- 
minate the SiOz models do not have the same polarity 
as the 0-Si bonds inside the models. Similar obser- 
vations can be made for AlP04 (Chart 4) and other 
solids, even if the nuclear charges on the terminating 
atoms are properly chosen. The obvious reason is that 
the electronegativity of the hydrogen Is orbital is dif- 
ferent from that of the sp3 hybrid orbital of the Si atom 
in the perfect crystal that it replaces. Let us consider 
models of solid Sizg1 Since H is more electronegative 
than Si, the Si-H bonds in the 

V I 1  
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TABLE 10. Effect of Replacing Bordering Hydrogen Atoms 
by “Siliaen” pseudo atom^^^^"^ 

S a w  

model X = H  X = H  
X3Si’ IP,” eV 8.6 6.1 

xgs  -c r(Si-O), pm 163 168 
‘0. r(O-O), pm 137 132 

LSiOO, deg 126 116 

(X3Si)3Si’ IP,a eV 7.9 5.95 

Ionization potential; experimental value 5.6-5.9 eV. 

model are polar and cause a nonzero residual charge 
also on the central Si atom. This prompted Redondo 
et al.z91 to scale the Slater 1s orbital on the hydrogen 
atoms such that a neutral central Si atom is obtained. 
The orbital exponent { found this way was 0.2944, 
significantly different from the standard value of about 
1.2. Hence, hydrogen atoms with { = 0.2944 have ef- 
fectively the same electronegativity as Si atoms in the 
bulk. Since they mimic bulk Si atoms, they are referred 
to as s i l i g e n P  and denoted by H. Siligens were found 
to have a significant effect on structure and properties 
of a model (cf. Table and have been used in 
subsequent s t ~ d i e s . ~ ~ - ~ ~ ~ ~ ~ ~  For example, the (H3Si)3Si’ 
model yields a value for the ionization potential (surface 
dangling bond) that is in excellent agreement with ex- 
periment (Table lo), and even the H3Si* model is off 
by only 0.2 eV. 

The optimum value of the Slater exponent depends 
on several factors. For a given model, it depends on the 
basis set used. For the STO-3G basis set the charge on 
the central Si atom is zero for c = 0.25 and = 1.5.z86 
Moreover, the optimum value of the exponent depends 
on the choice of the distance between the terminating 
hydrogen-like pseudoatom and its neighbor. Redondo 
et al.z91 put the siligens at  exactly the positions of the 
Si atoms they replace; i.e., r(Si-H) = r(Si-Si). The 
other possibility is to retain in the model only the bond 
direction of the crystal and to adopt for the bond dis- 
tance a typical value of the corresponding X-H bond; 
i.e., R(Si-H) = r(Si-H) = 148 pm (taken from SiH4). 
The optimum { values become significantly smaller ({ 
< 0.2 and { = 1.36). Finally, the siligens turn out to 
be different for different solids. When the ideas of 
Redondo et a1.291 are adopted for the Si(OH), model of 
Si02,z86 the optimum { values (STO-3G basis set) are 
1.65 and 0.62. (To fix the {values, use was made of the 
same criterion as considered above for judging the 
quality of the model [q(Si) = -2q(O)] and, hence, 4q(H) 
= q(Si).) Table 9 shows that the optimum values de- 
rived for Si(OH), yield a very satisfactory description 
of the charge distribution in the (HO),SiOSi(OH), 
model. 

It is worth mentioning that two different c values 
yield the same bond polarity. This can already be an- 
ticipated from the connection between orbital exponent 
and electronegativity, x. From the ionization potential 

I = Ex+ - E x  (IV.26) 

and the electron affinity 

A = Ex - Ex- (IV.27) 

one finds for a hydrogen-like 1s orbital (EH+ = 0):291 

x = l/z(I + A )  = -l/zEH- = -’ /Zl + ll/llSl- (IV. 28) 

e -  
Figure 4. Dependence of ionization potential, I ,  electron affmity, 
A, and electronegativity, x, of a hydrogen atom on the Slater 
orbital exponent, f (energies in hartrees, E,,; Eh = 2625.47 kJ/mol). 

When atoms with nuclear charges, 2, different from 2 
= 1 are considered, eq IV.28 should be replaced by 

x = -l/Z!? + (2 - 5/16)5. (IV.29) 

Equations IV.28 and IV.29 reflect the parabolic de- 
pendence of the energy of H- on { (cf. Figure 4). They 
give an idea how electronegativity responds to changes 
of the orbital exponent. The suggestionzg1 to make use 
of eq IV.28 to estimate { directly from experimental x 
values without any optimization, however, does not 
work for other systems, e.g. SiOz (vide supra), as it does 
for Si. There are so many assumptions underlying the 
pseudoatom concept that { should be taken merely as 
a system, basis set, and geometry dependent parameter 
that ensures proper “electronic” boundary conditions. 
It may be adjusted to mimic the influence of the (ne- 
glected) potential created by the surrounding. Different 
values may be used to introduce changes into the model 
that occur in the “embedding medium” of a given site. 

5. Pseudoatoms: Stishovite Example 

In the high-pressure modification of SiOz, stishovite, 
each Si atom is coordinated by six oxygen atoms in 
octahedral configuration and each oxygen atom is 
bonded to three silicon atoms. There is considerable 
interest in the question on how the electronic structure 
and bonding patterns of SiOz change when passing from 
four-coordinated to six-coordinated polymorphs, e.g., 
from a-quartz to stishovite. Previous density functional 
band structure calculationszg4 reached the conclusion 
that the higher coordination (and higher density) in 
stishovite favors a more covalent bonding (reduced net 
charges) while the opposite trend is observed in X-ray 
studies.z95 The net atomic charge on Si increases with 
coordination number.z95 Ab initio calculationsB5~z96 on 
molecular models seem to support the latter result. We 
are well aware of the fact that atomic charges have 
meaning only within the model defining them and that 
the underlying models are quite different for charges 
derived from X-ray experiments and those obtained 
from a Mulliken population analysis. The point of 
interest here is that the answer one gets from ab initio 
calculations sensibly depends on the choice of the model 
(Table 11). 

To find an appropriate molecular model of the octa- 
hedrally coordinated Si atom in stishovite is not as easy 
as it is for the polymorphs containing the Si04 tet- 
rahedra. For the latter the obvious choice was ortho- 
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TABLE 11. Comparison of Atomic Charges for Different Models of Four-Coordinated and Six-Coordinated Silica 
ModificationsH6f15m 

four-coordinated (a-quartz) six-coordinated (stishovite) 
basis set model charge charge modelc 

STO-3G Si(OH)4, stdo 1.36" 1.51b SiOs(2/3H)n 
Si(OH)4 1.54d 

(Ho)~s~os~(oH),~ 1.3gd 1.26d ~ i 0 6 ( ~ / 3 H ) 8 ( ~ i [ ~ / 3 H 1 , ) 2 f  

Si(OH)4" 0.81d 
s ~ ( o H ) ~ ~  0.77d 

si(oH),e 1.36d 1.32d Si06H8(SiH4)2 

STO-3G(*) Si(OH)4, std" 0.81" 0.87b Si06(2/3H)~2 

( H o ) ~ s ~ o s ~ ( o F ~ ) ~ ~  0.80d 0.72d ~ i 0 6 ( ~ / ~ H ) , ( ~ i [ ~ / 3 H 1 1 ) 2 h  
6-31G'*' Si(OH)(, stdo 1.1" 1.78b SiOd2/3Hi2) 
6-31G* Si(OHI4, opt 1.5' 
X-rayb expt 1.0 1.7 

"Reference 296; a standard (std) geometry was adopted (Dw) with STO-3G values for the SiOH bond angle and the OH bond distance. 
*Reference 295. 'Cf. Figure 5. dReference 286. e{(H) = 1.58. f{(2/3H) = 1.30, {('/,E) = 1.43. g.i@) = 1.32. h<(2/3H) = 1.00, {(4/3g) = 
1.43. Reference 69. 

X=$H 

SI 06 ( S H  l 8  ( SI [%HI4 12 

Figure 5. Molecular models for stishovite (Si ~ e n t e r e d ) . * ~ ~ ~ ~ ~  

silicic acid (IV). The analogue of this model for stish- 
ovite is much larger and more complex (Figure 5). It 
is bordered by two types of pseudoatoms, "one-sixth" 
(Xsi) and "one-third of a Si atom" (Ysi), respectively: 

{Si/6) = Xsi E {"/,+, Y6e, one hybrid orbital) 

(Si/3] = Ysi (Y3+, Y3e, two hybrid orbitals] 

The model has the composition Si06(Si/6)8(Si/3)z = 
Si306 and, hence, preserves the SiOz stoichiometry. The 
Xsi atom can be replaced by a hydrogen atom if an 
effective charge of 2/3+ is specified and, in addition, 
only two-thirds of an electron is added to the model for 
each of these atomszg5 Such a modified H atom (de- 
scribed by an hydrogen 1s orbital) will be symbolized 
as 2/3H. Of course, all modified terminating atoms 
together must contribute an integer number of elec- 
trons. The difficulty with Ysi is that it has two orbitals 
and an atom with two, but only two equivalent orbitals, 
and does not exist. A projection technique is necessary 
to handle such pseudoatoms. In a recent quantum 
chemical study on stishovite this difficulty has been 
bypassed by substituting for each Ysi two modified 
hydrogen atoms, 2/3H.2e5 This cannot be done without 
changing the local geometry, and structures of Th and 
D2h symmetry have been adoptedzg5 for the Si06 
('/3H)12 model to minimize repulsion between the 2/3H 
atoms within the pairs representing Ysi (see Figure 5). 

The Si06(z/3H)12 model yields a Si net charge of 
1.51+, and this was compared with a calculation on 
Si(OH)4 yielding 1.36+ (Table ll).295 However, the 
result depends sensibly on the SiOH bond angle. If, 
instead of 109.5°,295 the value observed far the SiOSi 

Y 

V 

angle in a-quartz (144') is adopted, the difference be- 
tween the two polymorphs disappears (Table ll). 
However, the sum q(Si) + 2q(O), which should be zero 
for a perfect model, attains values of 0.38+286 and 
0.32+296 for the a-quartz and stishovite models, re- 
spectively, indicating that both have defects. Therefore, 
calculations were made on models of both a-quartz and 
stishovite that used the observed atomic coordinates, 
even for the bordering pseudoatoms. When the expo- 
nent of the H 1s orbital is varied to make q(Si) + 2q(O) 
zero, the Si charge for the &(OH), model is significantly 
reduced. The Si charge calculated with this exponent 
for the disilicic acid model is very close to the result of 
the crystal orbital calculation (1.40+).le5 For stishovite 
no improvement was made on the Si06(z/3H)1z model, 
but rather the model was extended to avoid the above 
"Ysi problem". The Ysi = {Si/3) pseudoatoms (Figure 
5) were replaced by Si(0/3), groups, and the role of the 
"one-third of an oxygen" pseudoatoms 

(0/3] = XO ("/,+, Y3e, one hybrid orbital) 

is readily played by 4/3H atoms. In stishovite, 0 is 
assumed to have three equivalent valence orbitals and 
the two electrons in the fourth orbital we put into the 
core. This Si06(2/3H)8 (Si[4/3H]4)z model yields for 
stishovite q(Si) = 1.26, slightly less than predicted for 
quartz. It is not claimed that this is the correct trend; 
it is only claimed that another choice of the model can 
reverse the trend. Nevertheless, it should be very 
conclusive to see the results of crystal orbital calcula- 
tions on stishovite. One could argue that d orbitals play 
a more important role in Si06 than in Si04 structures. 
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CHART 5. Definition of Terminating “Fractional Atoms” 
by Hybrid Orbitals and pseudo potential^^^^ 

hi p,, 

H- 

F F 
Figure 6. Molecular model of the Si202 four-ring in s t i ~ h o v i t e . ~ ~  

Charges calculated by the STO-3G(*) basis set (Table 
ll), though smaller in absolute value, show the same 
pattern, however. (The 6-31G(*) basis set does not seem 
to be well-balanced as the Si charge in Si(OH)4 changes 
greatly when d orbitals are added on 0 atoms as well.) 

Several other molecules have been suggested as 
models of all of which violate pseu- 
doatom principles. STO-3G calculations on the Si(0- 
H),(OH2)2 yielded q(Si) = 1.39. This model 
puts Si in its proper octahedral coordination and keeps 
neutrality, but it yields improper electrostatic bond 
strength sums for the oxygen atoms (5/3 and instead 
of 2). This defect is removed in the octahedral molecule 
with the same brutto formula (H8Si06) but with the 
eight H atoms symmetrically arranged on the 3-fold 
axes of the Si06 octahedral group (Oh point symme- 
try).280 Since each of these hydrogens has three nearest 
neighbors, its bond strength is +1/3 and the bond 
strength sum to each oxygen atom is exactly 2. 

To model the Si202 four-ring present in stishovite, the 
[Si2(OH)2F8]2- anion has been suggested (Figure 6) and 
used to investigate shared edge distortions of the SiO6 
octahedra in this An analysis of this model 
in terms of pseudoatoms shows that the effective charge 
of the bordering atoms is 7.33+ and that they contrib- 
ute 7.33 electrons each (cf. Chart 3). Hence, the bor- 
dering fluorine atoms should be modified accordingly, 
~0 .033-  , and the Si2(02/3H)2(Fy&l)8 model should be 
a67t:ted. Its total number of electrons is 80, the same 
as the [Si2(OH)2F8]2- model has, but owing to appro- 
priate effective nuclear charges (0.66+ on H and 7.33+ 
on F), it has the advantages of being electrically neutral 
and of satisfying the electrostatic valence rule. 

6. Hybrid Orbitals and Pseudopotentials 

In the last three paragraphs we have considered all 
the modifications that can be applied to made a hy- 
drogen (or another) atom better suited as bordering 
atom in a molecular model. When they still do not 
serve our needs, we have to look for a less intuitive but 
more systematic way to implement the “fractional 
atom” idea (paragraph E.l). For the bordering atoms 
a complete set of valence hybrid orbitals is defined, but 
only those are included in the model basis set that form 
bonds with atoms inside the cluster. The electrons in 
the excluded hybrid orbitals are replaced by a pseu- 
dopotential that, however, has to be angle dependent. 
In their minimal basis set study on Si02, Litinski and 
Z y ~ b i n ~ ~ ~  terminate the ( sO)3S iOSi (O~)3  cluster by 
pseudoatoms % that possess only one sp3 hybrid orbital 
in bond direction. The remaining electrons are replaced 
by an angle-dependent pseudopotential. This proce- 

dure makes the difference between electron populations 
on comparable orbitals of inner and bordering atoms 
of the cluster smaller than 0.01e.279 Angle-dependent 
pseudopotentials would also solve the problem of the 
pseudoatom Ysi with two hybrid orbitals in models of 
stishovite (see paragraph IV.E.5 and Figure 5). 

Malvido and Whitten298 avoid the need of a non- 
spherical pseudopotential by retaining a back-bond 
hybrid orbital, he, which is assigned to the frozen core 
and occupied with one electron (cf. Chart 5 ) .  A 
spherical density, p(R), that integrates to two electrons 
replaces the other two valence electrons in the re- 
maining orbitals (two p orbitals perpendicular to the 
bond axis). These pseudoatoms, s, were used to sat- 
urate the Si(Si%3)4 and models, the latter de- 
signed to describe neutral vacancy defects in silicon. 
The calculations show good agreement with previous 
resultsB9 obtained for the “classical” hydrogen-bonded 
(*SiH3)4 model. 

7. Concluding Remarks 

There are presently not yet enough demonstrations 
that pseudoatoms involving fractional charges and 
modified orbital exponents actually yield improved 
agreement with experimental results. In particular, 
there is very limited experience with geometry opti- 
mizations. It is also true that any chemist (including 
the author) feels better when he deals with a real (or 
hypothetical) molecule that, at  least in principle, can 
be observed than with an artifact. However, the in- 
disputable advantages of the pseudoatom concept are 
as follows: (i) It helps to understand why a particular 
atom is well-suited to terminate the dangling bonds of 
one type of solid and why this is not the case for other 
types of solids. (ii) Comparison of results obtained with 
real atoms and pseudoatoms as bond saturators indi- 
cates how sensitive the results are to reasonable changes 
of the model. A striking example of the latter are the 
calculations on stishovite (section IV.E.5). 

Implementation of the pseudoatom concept appears 
more difficult when the basis sets are extended. There 
are not enough internal criteria to fix the increasing 
number of orbital exponents. The recommended solu- 
tion is passing to a hybrid orbital basis set on the ter- 
minating atoms. This requires a projection technique 
in combination with the frozen orbital approximation. 
Steps in this direction were described in section IV.E.6. 
Since impressive improvements of the results are not 
yet visible, so far there has been little incentive for 
adopting this more elaborate, though conceptually ap- 
pealing, approach. 

F. Geometric Boundary Conditions 
To determine theoretically the optimum geometry for 

a cluster or a molecular model the powerful methods 
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TABLE 12. Effect of "Geometric" Boundary Conditions on Bond Distanoes (pm) and Angles (STO-SG Basis Set) 
type of T1-0-T2, 

model optimizn" deg r(T'-Ob,) r(T1-Onbr) r(T2-0b,) r(TZ-O,b,) 0-T'-0 O-T2-0 ref 
(HO),SiOSi(OH), free 141b 161.7b (162.2)b3c not reported 302 

free 143 159.4 (165.8)' 108.2 282 
free 144 159.1 165.8 (109.5)' 282 
bc 154 158.1 (158.4)d (109.5)' 286 
periodic 133 160.5 (109.5)' 165 

[(HO),SiOAl(OH),]- free 139 156.9 (167.1)' 169.5 (171.9)' 112.8 108.0 282 
free 139 157.5 167.1 168.9 171.9 (109.5)' (109.5)' 282 
bc 142 157.0 (158.0)d 168.1 (168.8)d (109.5)' (109.5)' 286 

(HO)3POAl(OH)3 free 125 158.1 165.2 177.4 170.8 (109.5)' (109.5)' 289 
bc 126 157.2 (157.2)d 176.1 (175.3)d (109.5)' (109.5)' 289 

a Key: bc, "geometric" boundary conditions; free, "free-space" optimization. Note that the latter may also be constrained to reduce the 
number of optimization parameters. bThe 6-31G basis set augmented with d functions on the Si and Obr atoms was employed. 'Parameter 
fixed in optimization. Parameter constrained by geometric boundary conditions. 

available for molecules39~40 (cf. section 1I.A) can be 
adopted. A recent theoretical studpW of small silicon 
clusters (Sin, n = 2-7, 10) illustrated how difficult it is 
to get results of some relevance for the crystal if neither 
electronic nor geometric boundary conditions are im- 
posed. The optimum structures for a given number of 
silicon atoms possess a topology that is completely 
different from that of the corresponding small crystal 
fragments. For n = 5 it is not the tetrahedral structure 
VIII, for n = 6 it is not a six-membered ring IX, and 
for n = 10, it is not the adamantance-type structure X 

IX X V 

that are the most stable ones. It became obvious that 
much larger clusters would be required before the mi- 
crocrystal structures with many dangling bonds become 
competitive with the more compact clusters in which 
the Si atoms are better coordinated. The conclusion 
is that searches on hyperfaces should be limited to 
structures with the same topology as fragments of the 
crystal one is going to model. Moreover, electronic 
boundary conditions should be imposed as described 
in preceding paragraphs. 

Numerous calculations of such a type have been made 
to estimate bond distances and angles for solids (cf. 
sections V-VII). Again, we take silica and related 
framework structures as example (see, e.g., ref 282, 301, 
and 302). Table 12 shows bond lengths and angles for 
optimum structures of (HO)3T(1)-O-T(2)(0H)3 models 
(T = Si, Al-, P+). Their structure deviates significantly 
from that of the corresponding building units of the 
infinite solid. Due to termination by hydrogen atoms 
the model exhibits two different types of oxygen atoms: 
bridging atoms, Ob,, which are bonded with two silicon 
neighbors and nonbridging atoms, Onbr, which are 
bonded with one silicon and one hydrogen neighbor. 

Correspondingly, two types of T-0 bonds exist, T-Ob, 
and T-Onbr, which have different lengths, and the op- 
timum T-Onbr-H angles are different from the optimum 
T-Ob,-T angles. In contrast, in the bulk of the 

framework structures considered, only one type of ox- 
ygen atom (bridging) occurs and all T-0 bonds have 
the same length. Of course, as many studies have 
shown, the results for the central T(1)-0b,-T(2) groups 
are representative for the situation in the bulk and not 
very much affected by the improper geometry of the 
bordering Si-Onb,-H groups. 

Nevertheless, we can make a model more realistic by 
employing knowledge on periodicity of the structure 
and impose "geometric" boundary conditions in addi- 
tion to the "topologic" ones mentioned above. Le., we 
require" 

r(T-0l-h) = r(T-Obr) (IV.30) 

and 
LT-Onbr-H = LT-Ob,-T (IV.31) 

The same bond angle on Obr and Onbr will enforce the 
same hybridization on both types of oxygen atoms and, 
consequently, will reduce the charge difference between 
Onbr and Obr atoms. To obey eq IV.30 and IV.31 is 
trivial if we can work with the known positions of the 
atoms of the site of interest in the crystal and would 
like to calculate the energy and wave function for this 
geometry. The terminating hydrogen-like atoms either 
are put directly on positions of real atoms (as described 
above for the Si(SiH3)4 or are put on the line 
connecting this atom with its neighbor X inside the 
model a t  a distance typical of X-H bonds. This way 
the bond angles of the bulk are preserved. 

However, if we are going to determine bulk values of 
bond distances and angles theoretically, we have to 
ensure that eq IV.30 and IV.31 are valid in each step 
of the optimization procedure. The difference to a 
normal optimization run is that increments for changing 
the geometry parameters are calculated for the T-Ob, 
bonds and T-Ob,-T angles only, but using these in- 
crements identical steps are made for the T-Onbr dis- 
tance and T-Onb,-H angle as well:286~28g 

Ar(T-Onb,) = Ar(T-Ob,) (IV.32) 

ALT-Onbr-H = ALT-Ob,-T (IV.33) 

Such optimizations under "geometric" boundary con- 
ditions are conveniently carried out by geometry op- 
timization programs that transform the calculated en- 
ergy gradients into internal coordinates to make a step 
toward the energy minimum. Examples are Pulay's 
force relaxation method39 as implemented into HOND05 
by CBrsky et or Schlegel's method40 as imple- 
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mented into the GAUSSIAN  program^.^^,^^ Note, one 
cannot obtain the same result in a standard optimiza- 
tion run by simply constraining r(T-Ob,) and r(T-On,,,) 
or LT-Ob,-T and LT-Onb,-H to change by the same 
amount at  the same time. This would yield average 
bond distances and angles affected (in the present case 
even dominated) by the values that are optimal for the 
artificially introduced T-O,b,-H groups. For example, 
for T = Si the optimal T-Ob,-T angle is about 145O, 
while the optimum T-O,b,-H angle is about 108’. 
Table 12 compares for three models the results of 
nonconstraint with those of constraint optimizations. 
The effect of geometric boundary conditions is not 
dramatic, but a properly constrained optimization 
certainly helps to separate errors connected with the 
model from those connected with the quantum chemical 
method and basis set. Table 9 shows that the charge 
difference between bridging and nonbridging 0 atoms 
of the (H0)3SiOSi(OH)3 model is halved for geometries 
compatible with geometric boundary conditions (e.g., 
for observed geometries). In calculations on relaxation 
of the (111) surface of silicon79 and formation of bonded 
pairs on (100) surfaces,77 the “siligens” belonging to the 
surface layer of the model were also moved according 
to geometric boundary conditions (cf. section VI). 

Sauer 

G. Reliable Predictions from Approximate 
Calculations on Limited Models? 

Ab initio calculations on molecular models of solids 
are affected by two types of errors: errors due to ap- 
proximations connected with the quantum chemical 
method (section 11) and errors due to replacing the solid 
by a finite model (this section). 

When dealing with models of solids, we are in the 
domain of medium-sized or large molecules (systems 
starting from five up to dozens of atoms) frequently 
containing elements from higher periods and involving 
unusual bonding types. Although the situation is ex- 
pected to improve rather dramatically soon, for the time 
being the majority of applications presented in sections 
V-VI1 neglect electron correlation and employ small 
basis sets that do not always contain polarization 
functions. From the discussion in section I1 it is evident 
that such results can be fraught with sizable uncer- 
tainties. It is a further complication that the error due 
to replacing the solid by a finite model is also unknown. 
How is it possible, in spite of this, to make reliable 
predictions? 

First, one should try to empirically find increments 
to correct for errors introduced by the method/the basis 
set used: (1) Select a set of molecules with electronic 
structures comparable with your model for which you 
know the accurate result (either from experiment or 
from a accurate calculation). (2) Perform calculations 
on these molecules with the method/basis set you in- 
tend to use for your model (or find results in literature). 
(3) Compare your results with the accurate ones. (4) 
In case you find considerable regularity in the devia- 
tions, derive increments or scale factors to correct your 
results. (5) Get corrected results for the models in- 
vestigated. 

Examples of this type of approach are the 
“empirically corrected theoretical geometries”304 rec- 
ommended by Pulay305 and the ‘scaled force fields” 
suggested by Blom and A l t ~ n a , ~ ~  Pulay,3°6 and others. 

H,SiO SiH3 IHOI,SIOSI(OHI, 510, 
Cald Obsd 

-221 

i- 
-261 

10 n i 0 n d 

bond n~ 

Figure 7. Valence electron levels of SOz.  Observed values308 
compared with predictions based on STO-3G calculations for the 
disilicic acid model and both observed and calculated data for 
the disiloxane and water molecules (see text). 

Another example is the calculation of the valence 
electron levels of SiOz that used the STO-3G basis set 
and adopted the disilicic acid molecule (VI) as model. 
The systematic error connected with the STO-3G basis 
set was evaluated by making calculations307 on the 
H3SiOSiH3 and H20 molecules for which photoelectron 
spectra were observed. Hence, from the calculations 
it was inferred how the 0 2p and 0 2s levels shift when 
passing from the disiloxane and water molecules, re- 
spectively, t~ the disilicic acid molecule. Figure 7 shows 
that after such an “empirical correction” the valence 
electron levels of disilicic acid satisfactorily reproduce 
the levels observed for Si02.308 

Second, one should try to apply what is called the 
“hierarchic” approach: (1) Design a series of models of 
increasing complexity. (2) Select a series of meth- 
ods/basis sets of increasing reliability. (3) Study the 
smallest model by all the methods and study all the 
models by the simplest method. As an example we 
consider the binding of a molecule (say H20) onto the 
surface of transition metals. An adequate model must 
certainly include many metal atoms (from different 
layers). However, we will not understand the binding 
in such an advanced model if we do not understand the 
nature of the binding between a single transition-metal 
atom and a H20 molecule. Investigating this “minimal” 
model by methods including electron correlation 
showed that binding is largely due to dispersion ener- 
gy.87389 Previously predicted stability at  the SCF level 
was shown to be due to an artifact, namely basis set 
superposition error (cf. section V.C). This shows that 
it is useless to study complexes of H20 with several 
transition-metal atoms at  the SCF level. 

The combination of both of the above ideas is exem- 
plified by the predictions made for the local structures 
of terminal (=SiOH) and bridged (ESiOH-AlZ) hy- 
droxyl groups in zeolites (Figure 8).69 These geometries 
are difficult to deduce from experiments, but to know 
them is important for understanding their catalytic 
(Bronsted) activity (cf. section VII). The predictions 
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TABLE 13. Calculations on Perfect Lattices of Ice and  Other Molecular Crystals (Units: Energies, kJ/mol; Distances, pm) 

monomer (H20): crystal dimer [(H20),] 

Ice I 
(type) method; model ref -AE Roo ?OHa -AE ?OHa ?OH 

experiment* 310b 59.0 275 99.5e 22.6 * 2.9 296 i 1 95.72 
(A) SCF/4-31G; cyclic hexamer 314 272 97.4 33.8 286 95.7 95.2 
(A) SCF/VDZ; cyclic hexamer 315 45.4 263-272 95.1 
(A) SCF/[5,3,1/3,1]; infinite chain 173 29.3 284 95.4 21.8 298 94.6 94.2 

(C) MCY; hexamer 315 30.0 280-288 (95.7) 
(B) MP2/6-31G*; dimers, trimers 310 51.5 287 (95) 21.8 298 (95) 95 

(C) MCY + 3-body + 4-body; hexamer 315 35.6 265-274 (95.7) 24.6 287 (95.7) 95.7 
(C) MCY, 3-dim lattice 316 49.6 296 (95.7) 
(C) modified MCY, 3-dim lattice 317 54.3 290 (95.7) 25.3 298 (95.7) 95.7 
(C) modified MCY + 3-body + OH stretch; 317 66.1d 27gd 97.7d 

3-dim lattice 59.8e 285e 97.2e 25.3 298 (95.7) 95.7 

experimentb 318b 61.9 263 104  66.9, 61.9 270 103.6 97.2 
(A) SCF/[4,2/2]; infinite chain 170 66.5 261 99.3 101.3 264 88.7 96.0 
(C) potential; 3-dim lattice 318 52.3-56.58 263-2698 46.9 267 

Formic Acid 

experimentb 
(C) potential, 3-dim lattice 

Acetic Acid 
318b 68.2 263 62.8 268 
318 51.9-523 266-2648 50.2 265 

aValues in parentheses not optimized (fixed at the monomer value). bFor references to experimental work, see quoted theoretical papers. 
eReference 319 dPma21 structure. e Cmcal structure. 'Reference 170. #Two different procedures were used to optimize the lattice geom- 
etrya318 

Figure 8. Recommended estimates for the local geometry of 
terminal and bridged hydroxyls in zeolites.6g 

are based on SCF calculations on the H3SiOH and 
H3SiOH-A1H3 models that used the 6-31G* basis set. 
Increments to correct for systematic errors of geometry 
parameters and error limits were inferred from the re- 
sults compiled in ref 51 and the data of Table 1. The 
sensitivity of the results on extension of the models up 
to and (HO),SiOH.Al(OH), was estimated by 
calculations employing the minimal STO-3G and 
MINI-1 basis sets.69 

The point in adopting models of different sizes and 
employing basis sets of different qualities is that one 
does not get just one number, but one gets a feeling of 
how uncertain this number may be and this should be 
indicated explicitly by specifying error limits for the 
results. 

V. Molecular and Ionlc Crystals 

A. Molecular Crystals 

The geometry and the properties of a molecule in 
crystalline state are different from the respective gas- 
phase values. Moreover, the interaction between pairs 
of molecules is also affected by the crystalline envi- 
ronment. 

As crystal orbital (CO) methods to cover all interac- 
tions are not yet feasible (note, however, an early 
minimal basis set study of the band structure of solid 
methan3Og), three different types of approaches are 
currently employed: 

(A) Large Finite Clusters. It is hoped that most 
significant interactions are included. Infinite chains are 
a special case; they adopt the cluster approach in two 
dimensions but employ the crystal orbital technique in 

the third dimension. Hydrogen-bonded chains of HF, 
H20, CH30H, HCOOH, H2NCOOH, and HCN were 
extensively studied by Karpfen et a1.170-173J89J90 The 
cluster approach is also most suited to study defects and 
other local phenomena (vide infra). 

(B) Superposition of All Different Dimer and 
Trimer (and Possibly Tetramer) Interaction En- 
ergies. This approach expands the total stabilization 
energy of the crystal into two-body, three-body, and 
higher many-body contributions and, thereby, replaces 
the calculation on a huge cluster by a number of cal- 
culations on the respective n-membered clusters. 
Computational savings arise from the possibility (1) to 
neglect n-body interactions when the distance of the 
species involved is beyond a given cutoff limit and (2) 
to treat the dominant two-body terms by better meth- 
ods than the many-body terms. Both the 
"supermolecule" approach, e.g. ref 191 and 310, and 
intermolecular perturbation theory, e.g. ref 269, 311, 
and 312, may be employed. 

(C) Analytical Potential Functions. These are 
used to evaluate the two-body (and possibly many- 
body) contributions to the energy of the crystal. Em- 
pirical atom-atom potentials are described in ref 313. 
We consider only nonempirical potential functions. 
Their parameters are obtained by a fit to results of type 
B. 

One of the most studied crystals is ice (Table 13). 
From experiments we know that its cohesive energy is 
about 2.5 times the stabilization energy of the gas-phase 
dimer. The crystal potential compresses the 0-0 
distance by about 21 pm and, at  the same time, 
stretches the OH bond by about 4 pm compared with 
the gas-phase dimer. 

Cyclic hexamers are typical building units of ice and, 
hence, suitable cluster models. But they contain only 
one hydrogen bond per molecule while ice contains 
about two. It is therefore not surprising that calcula- 
t i o n ~ ~ ~ ~ , ~ ~ ~  on hexamers (Table 13) predict a stability 
increase by only a factor 1.3 compared with the dimer, 
while an increase of 2.6 is observed for ice. The same 
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as well as for oligomers of H20314y315 and HCN.323 Force 
constant calculations do not yet go beyond harmonic 
terms, and quantitative agreement of observed O-H 
frequencies is not yet reached. 

Finally, we should mention two special techniques for 
nonempirical calculations on molecular crystals. The 
first method324 starts from the isolated molecule model 
and approximates the SCF solution for the crystal by 
perturbation theory. When taken to sufficiently high 
order, it becomes ultimately equilvent to the CO me- 
thod. Compared with the latter, it does not save any- 
thing on the integral side but it avoids integration over 
k space (cf. section 111) as the solution is obtained di- 
rectly in terms of density matrix elements. Hence, the 
method is computationally advantageous only when the 
expansion converges rapidly, i.e. when the (free space) 
molecular orbitals provide a good approximation to 
density matrix elements of the crystal. To the authors 
knowledge the only application up to now is a study on 
the “in-crystal” dipole and quadrupole moments of HC1 
and HF employing the 3-21G basis set.325 Contrary to 
the above-mentioned results of CO calculations on the 
one-dimensional c h a i n ~ ’ ~ ~ J ~  (cf. section 111), it predicts 
lower dipole moments in the crystal than in the gas 
phase. 

The second method326,327 also starts from molecular 
orbitals localized on individual molecules that, however, 
are relaxed “in-crystal” orbitals. As orbitals belonging 
to different molecules are nonorthogonal, the energy 
expression for the total energy of the crystal depends 
explicitly on the inverse overlap matrix, S-l. This re- 
sembles the treatment of the cohesive properties of ionic 
solids in the pioneering work of L o ~ d i n ~ ~ ~  and in sub- 
sequent studies (ref 311 and 312 and references therein). 
For ionic crystals the smallness of the off-diagonal el- 
ements of the overlap matrix S justifies a power series 
expansion of S-l that is truncated after terms in S2. 
The present method, however, is particularly designed 
to treat molecular crystals under pressure, where the 
off-diagonal elements of S are relatively large. A set 
of simple linear equations is suggested326 to solve for the 
elements of S-l. The method evolves its computational 
advantages only when combined with a term by term 
treatment of first-neighbor, second-neighbor, and so on 
interactions and with additional approximations. The 
only application to date deals with solid H2 under high 
pressure.327 

increase (factor 1.3) is found for the infinite chain,173 
which is also stabilized by one hydrogen bond per 
molecule. Neither of the model calculations yields the 
full compression of the 0-0 distance. Note that these 
results are affected by both imperfections of the model 
and shortcomings of the basis set such as superposition 
error and overestimation of the water dipole. While the 
former will result in a too large an 0-0 distance, the 
latter will make it too short. When all dimer and trimer 
interactions are properly computed, making corrections 
for the basis set superposition error (BSSE) and in- 
cluding correlation effects at  a simple level (MP2), the 
calculated cohesive energy comes close (up to a few 
kilojoules/mole) to the experimental value.310 The im- 
portance of three-body effects is underlined by the re- 
sults obtained with nonempirical potential functions. 
Both for the cyclic hexamer315 and the three-dimen- 
sional lattice317 the 0--0 distance shrinks by about 
13-19 pm on inclusion of many-body contributions. 
The stretching of the O-H bond is found to be nearly 
independent on the shrinkage of the 0-0 bond. The 
effect of the O-H stretch is just to increase the binding 
energy. The use of the famous “Matsuoka-Clementi- 
Yoshimine” (MCY) pair potential320 for calculations on 
ice revealed that it is not only too attractive in the 
bonding region (see the result for the dimer) but also 
too repulsive a t  short distances (as consequence the 
calculated O-.O distance of ice becomes even longer 
than that for the gas-phase dimer). On the basis of 
additional calculations, a new fit of the MCY potential 
has been suggested317 that improves the description of 
ice. 

Nonempirical pair potentials were also employed to 
predict structures and energies of carboxylic acids.318 
While reasonable accuracy was reached for the struc- 
tures of dimers and crystals, the calculated energies are 
in error by about 30% (Table 13). A compilation of 
calculations on models of defects and local sites in ice 
and crystalline NH3 is given in Table 14. 

In summary, promising attempts have been made 
along different lines to treat molecular crystals theo- 
retically, which are not yet converged to definite results. 
Future successful studies are expected to show the 
following features: (1) Three-body and possibly higher 
many-body contributions must be included. (2) Two- 
body potentials must be very accurately evaluated, 
paying attention to all that is known today on how to 
properly calculate intermolecular  interaction^.^^^^^^^ The 
hardest problem to overcome if quantitative results are 
attempted is to get converged results for the dispersion 
energy (see, e.g., ref 321). So far only crude estimates 
(by the MP2 approximation) have been made for ice310 
and hydrogen fluoride.lgl (3) The convergence of the 
cluster approach could be improved (with little extra 
cost) when the cluster is embedded in properly fixed 
point ion arrays. This way, “in-crystal” pair interactions 
would be obtained that might be particularly useful for 
procedure 3 above. (4) Frozen molecule geometries will 
do as long we are interested in lattice parameters and 
cohesive energies. When aiming at  “in-crystal” vibra- 
tional frequencies and, e.g., O-H distances, accurate 
(anharmonic) potentials are i n d i ~ p e n s a b l e . ~ ~ ~  Full op- 
timizations of geometry parameters are limited to type 
A approaches. Results have been reported for infinite 
chains170t171J73 of HF, HzO, HCN,HCOOH,and CH30H 

B. Ionic Crystals and Surfaces 

With the exception of CO studies (which have been 
only recently completed for MgOm and LiHlg7), since 
the pioneering work of L o ~ d i n ~ ~ ~  theoretical concepts 
for ionic crystals rely on the assumption that ions retain 
their individuality in the crystal and are described by 
well-localized orbitals. Table 15 shows what has been 
achieved in describing perfect crystals. The same 
classification, types A-C, can be applied as introduced 
above for molecular crystals. Lowdin’s approach has 
been substantially advanced and extended by Andzelm 
and Piela.311i312 Their studies on LiF311 and NaF312 
point to the important role of second order, e.g., dis- 
persion effects and of many-body contributions. A more 
recent extension269 of this work takes account of ex- 
change effects in the deformation of the interacting 
ions. 
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TABLE 14. Calculations on Models of Local Sites in Molecular and Ionic Crystals 
subiect model' method/basis setb aim ref 

~~ 

ice, Bjerrum and ionic defects 

ice, Bjerrum L defect 

ice Ih, orientational defects 

ice 

ice Ih and VI11 

NH3 crystal 

bonding in B6H6" within the 

interionic potentials of LiF 
[ (CHS)~N+]Z(B~H~~- )  Crystal 

interionic potentials of NaCl 

interionic potentials in solid 
NaOH 

interionic potential in MgO 
electronic structure of NiO 
core level shifts in LiF, BeO, 

and MgO 

Na' hole states in NaF 

F center in LiF and other 
halides 

F and FA centers in alkali 

F+ center in MgO 

Cut ion impurity in NaF 

halides 

and NaCl 

optical spectrum and 
Jahn-Teller splitting of 
Cu2+ sites in K2CuF4 

excitations in cuprous halides 

CoC1,2- ion in Cs3CoC15 

([CUX,];~'~ X=C1, Br 
([CUicll L P  
[[CUClCU] j 
(CoC1,2-)' 

MR-CI/ [10,6,1/8,3,1] 

CI/DZP+dif p,d 

SCF/DZP+dif p,d 

SCF/(7,4,3) 
RHF,UHF/ [431/31] 
RHF/ [4,3/4,21 

RHF/ [6,4/4,3/4,21 

RHF/(17,8)/[3,2,11 
RHF/[ 10,7/3,3,1] 
RHF/DZ(F-DZ+dif)c 
RHF/MB(F-DZ+dif)c 

UHF/[4] ( 4 ~ ) ~  
UHF/[4,3] ( 4 ~ ) ~  
UHF/DZP ( 5 ~ ) ~  
UHF/MB ( 3 ~ ) ~  
SCF/[ 10,9,3/6,4,1] 
F, C1: EC-[2,3] 

MR-SD-CI/SV 

SCF, first-order CId 

CAS-SCF/ [8,5,3/6,4] 

"in-crystal" dipole moment of a 
water molecule in ice 

activation energy for L defect 
migration via rotation of 
the central HzO 

local geometry and relative 
energy of L and D defects 

I7O and 2H nuclear quadrupole 
coupling constants 

electric field gradients a t  nuclei 

electric field gradients at nuclei 

orbital energy levels, influence 
of point ion field 

total energies; two-, three-, and 
four-body contribution to 
binding energies; difference 
between free and embedded 
clusters 

parameters 

length 

parameter 

rigid-ion pair potential 

structure including O-H bond 

rigid-ion pair potential 

shell model potential parameter 
one-electron levels (IP) 
core- and valence-electron levels, 

relaxation energies, effective 
orbital sizes, shake-up 
probabilities 

wave functions for evaluation 

2S - 2P excitation energy 
of Auger rates 

optical absorption energies, 
hyperfine splitting constants 

optical properties, lattice 
distortion, polarization 

Cu-B equilibrium distance, 
optical spectra (lAlg, lv3Eg, 
'W, energy levels) 

harmonic force constants, JT 
coupling constants, adiabatic 
(anharmonic) potentials 

photoionization spectrum 

energies of d-d excitation, 

spin density, optical spectrum 

319 

310 

329 

275 

330 

331 

332 

255 

333 
334 
259 

335 
336 
337 

338 

339 

270 
254 

258 

271 

256 
257 

340 

341 
342 

343 

{ Ip denotes embedding by a point ion array. See sections 1I.A and C for explanations of symbols and abbreviations. Basis sets may be 
specified by giving the number of s, p, d, ..., functions in brackets. Square brackets refer to contracted GTFs while parentheses refer to 
uncontracted (primitive) basis functions. A slanted stroke separates entries for atoms from different periods in descending order. Basis set 
for the defect electron at the anion site. dBasis set not specified. OAll 10 electrons of the 18 second nearest-neighbor Na' ion are replaced 
by an effective core potential (total ion potential). 

From these results as well as from the significant 
differences between "in-crystal" and gas-phase prop- 
erties of anions (cf. section IV.D, Table 81, it follows 
that any attempt to derive ion-pair potentials should 
be made for an ion pair embedded in a point ion array 
(as done in some cases,255,311,312 listed in Table 14) or, 
even better, for a cluster including first neighbors as 
we11.269*344 Hence, the intention of Laaksonen and 
Clementi333*334 to derive nonempirical pair potentials 
that can be applied to (1) diatomic and dimeric species 
in the gas phase, (2) perfect and defect crystals, and (3) 
the molten salt seems not very promising. Their po- 
tential has been derived from gas-phase calculations. 
And indeed, the error it produces on the energy of co- 

hesion of NaCl (lo%, cf. Table 5 )  by far exceeds the 
error for LiF, NaF, and MgO for which embedded 
clusters were used. Another successful ab initio struc- 
ture prediction via pair potentials has been reported for 
solid NaOH (cf. Table 4). 

For simulation of perfect and defect ionic lattices as 
well as for impurity centers, theoretical methods have 
been developed that rely on ion-pair 
Although the use of empirical potentials has met some 
success, serious parameterization problems have arisen 
that call for ab initio pair potentials. It will also be 
typical to combine ab initio potentials for some type of 
interaction (02---02-) with an empirical potential 
(Mg2+*-O2-) as recently done in a on bulk and 
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TABLE 15. Cohesive Energy (Ecoh, kJ/mol), Lattice 
Constant (2ao, pm), and Compressibility (8, lo-" m2/N) for 
Perfect Ionic Crystals 

type of 
calculation ref Ecoh 2% P 

LiF 
calcd CO" 346 1077 397 
calcd LDA/COb 223 945 409 
calcd B' 311 1024.7 404 1.44 
calcd B' 269 1028.4 403 1.36 
obsdd 1032.6 i 8.8 403 1.43 

calcd B' 312 932.5 458 2.24 
calcd B' 269 934.3 458 2.31 

911.7 i 8.8 463.4 1.94 

calcd C' 334 850.2 576 4.85 

1021 401 
NaF 

calcd A' 256 462.5 
obsdd 932.2 460.5 1.93 

NaCl 

calcd A' 257 566 
calcd LDA/PWe 2 1  556 3.52 
obsdd 775.3 564 3.65-3.76 

LiH 
calcd CO" 197 888 410 2.93 
obsd 908 408 2.88-4.39 

MgO 
calcd 347 1004 
calcd CO" 200 961 420 0.54 
calcd LDA/PWe 348 961 419 0.68 
obsdd iooa 421 0.56-0.65 

Crystal orbital calculations; cf. section IILC. Crystal orbital 
calculations within the LDA (cf. sections 1I.D and 1II.D). 'Type of 
approach (A-C) as described in section V1.A. dFor references see 
quoted theoretical papers. e Pseudopotential calculations within 
the LDA (cf. section 1I.D) employing a basis set of plane waves (cf. 
section 1II.D). 

defect properties of MgO. The ab initio potential 
performs as well as the empirical potential although the 
02--.02- short-range interactions have different signs 
in both schemes. This finding underlines the ambiguity 
of empirical potentials. Table 14 provides a key to 
further calculations on defects and local phenomena. 

Table 16 lists studies of chemisorption and physi- 
sorption on ionic surfaces. The first question asked in 
chemisorption studies is for the mechanism, e.g., 
whether H2 is split heterolytically or homolytically. To 
decide, accurate relative energies for different bonding 
situations are needed. These, however, are not provided 
by the SCF method that most studies use but require 
beyond Hartree-Fock techniques (see. e.g., ref 75; cf. 
section 1I.C). Hence, the answers are no more than 
qualitative (section VI). It seems characteristic that 
chemisorption occurs on defective surfaces only, while 
physisorption (binding of intact molecules) can occur 
on planar (nondefective) surfaces. In the most ad- 
vanced physisorption studies, pair potentials between 
the ad-atom (He) and the ions of the solid (Li+F-) are 
derived from SCF calculations on next-neighbor models 
(NNM), F-(Li+)5, embedded in point charge arrays.344 
Repulsion potentials between He atoms and "in-crystal" 
ions are found to be significantly weaker than those 
involving free ions (compare similar findings for in- 
terionic potentials mentioned above), and surface an- 
ions are much less polarizable than free anions (but only 
slightly more than bulk anions). 

Simpler "supermolecule" approaches to physisorption 
rely on the assumption that the major binding effect 
is due to electrostatic interactions and polarization of 
the ad-molecule by the ionic lattice. The quantum 

chemical problem is solved for a model consisting of the 
ad-molecule and a single surface ion (or very few ones), 
while the remainder of the crystal is included as point 
charge array on the Hamiltonian of the model.34973503359"2 
Adsorption of CO on the MgO(001) surface has been 
studied by both embedded ion cluster models359 and 
periodic crystal orbital techniques (cf. section III.C)203 
within the HF approximation. The stabilization energy 
with finite models (38 kJ/mol) is about twice as large 
as the result of the periodic calculation (about 18 kJ/ 
mol). Both nonphysical and physical factors may ac- 
count for the difference. First, the calculations use 
different basis sets. Second, the periodic calculation 
uses a single layer of the MgO crystal only, which may 
be a poor approximation of the electric field due to the 
semiinfinite crystal. Third, the periodic calculation 
includes lateral repulsion between neighbored CO 
molecules, which, however, has been estimated to be not 
larger than about 2 kJ/m01.~O~ When comparison is 
made with observed heats of adsorption, one should be 
aware that there are also attractive lateral interactions 
in an ad-layer of CO molecules due to dispersion 
forces365 and, hence, obtained only when electron cor- 
relation is included (cf. section 1I.C). Electron corre- 
lation is also necessary to reproduce the correct sign of 
the dipole moment of CO. 

In some physisorption studies, the ionic surface is 
merely represented by its electrostatic properties. I.e., 
the quantum chemical equations are solved for the 
ad-molecule only and the electrostatic properties of the 
ionic surface are included in the Hamiltonian either as 
point charge array361 or (connected with a multipole 
expansion) by characteristic values of the potential, the 
electric field, the field gradient, etc.367i3M In such cases, 
since no repulsive terms are present, an assumption has 
to be made for the equilibrium distance of the ad- 
molecule above the surface361~367~368 or an empirical 
atom-atom potential has to be added to account for 
repulsion (and possibly dispersion).361 

In conclusion, for ionic solids there is no problem with 
modeling as long as the clusters are properly embedded 
in point charge arrays. Frequently, in particular in 
adsorption studies, single-ion models will do. However, 
the quantum chemical method deserves more attention. 
Some problems will be mentioned in the next para- 
graph. 

C. Basis Set Superposltlon Error and Other 
Computational Problems 

When dealing with complexes or clusters consisting 
of ions and/or molecules, there is the danger of basis 
set superposition effects (see, e.g., ref 321 and 322). The 
basis sets commonly used to describe the ions or mol- 
ecules are far from being saturated and, hence, in a 
complex or cluster each subsystem will tend to use the 
basis functions of all the other subsystems to lower its 
energy. This makes nonphysical contributions to the 
stabilization energy of the cluster and leads to artificial 
charge transfer (from the subsystem considered onto 
the subsystem from which the orbitals are "borrowed"). 
The stability of results with respect to the superposition 
of orbitals of the other subsystems can be checked by 
the Boys-Bernardi method.369 To the basis functions 
of a subsystem, e.g., A, all the basis functions of the 
other subsystems (we consider only one, e.g., B) without 
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TABLE 16. Models for Chemisorption and Physisorption Studies on Ionic Crystals 
subiect model" method/basis setb aim ref 

H2 chemisorption on MgO(001) 
surfaces (nondefective surface; 
surface defects, self-trapped 
hole, anion vacancy, V; 
center; 
low coordination edge sites) 

region 
H on MgO(ll1) microsurface 

H-D exchange on irregularities 
of MgO(001) surfaces (kinks 
and steps) 

H2 chemisorption on MgO 
surface, Mg vacancy 
(V center) 

H2 dissociation on MgO 
surface, Mg vacancy 
(V center) 

H20 dissociation on the 
MgO(100) surface 

chemisorption of H on 
NiO(001) perfect surfaces, 
vacancies, substitutional 
defects 

CO adsorption of MgO(001) 
surfaces (nondefective and 
doped) 

the MgO(001) surface and 
on impurity Cu+ ion therein 

alanine on the quartz (1010) 
surface 

adsorption of C1 species on 

COP and carbonyl compounds 
on the NiCl(100) surface 

H 2 0  in A-type zeolites 

He on different surface defects 
of LiH: H- vac (loo), Li+ 
vac (loo), Li+-Lit (110), 
Li+ (110), H--H- (110), H- 
(1101, H- vac (110) 

He on LiF surfaces 

Chemisorption 
HOn-)P; HMgn+lP; HO;jP; H)P;c SCF/DZP+dif p(02-) binding energies and 349, 350 

H(Mg2+),jP,' HMgn+(02-)5)P," activation energies of 
HO-(Mg2+),)Pd (m = 1, 3-5)' dissociative chemisorption 

{(O-.-O-) (02e)3jP 
((-OH--HO-)(0,Z-)3)p 

(Mg2+jS," (02jS,h ((Mg2+)HzO)S,h 

{(02-)H+)S 
H-02-Ni2+)P, H-Ni2+(02-)4jP, 

H-(OP)~JP (vacancy), H-(NiZ+),jP 
(vacancy), H-Ni2+(0P-)4)P 
(vacancy), H-02+jp (vacancy), 
H-Al2+(O2-),jp, H-NZ-(Niz+))P, 
H-P2-( Ni2+)jP 

I(O2-)H20js,h {(Mg2+)0H-js,h 

UHF/VDZ+P 

SCP/3-21G 
MP3/3-21@ 

SCF/STO-3G 

MR-S-CI/ [4,2] 
MR-S-CI/ [4,2] 
MR-SD-C1/[5,3,1/3,1] 
SCF/[4,2/3,2,1/21] 

UHF,RHF,GVB/ 
[431] (Ni) 

MB+dif s(0) 

Physisorption 
0C-Xn+jp; OC-Xn+(O2-),JP SCF/DZP +dif p(02-) 
(X = Mg2+, Li+, Na+, A13+, Cu2+, 

Cu+, Zn2+); 
CO-Mg2+02-)P, CO-(Mg2+02-)2)P 

(02--Mg(A)-02-)P (M = Mg2+, CU+; 
A = CO, HCO, HOC, H2C0, 

RHF/3-21G(A), 
3-21+G(02-), [4,1] 

HCOH, CH20H, CH30) (Mg), [5,2,11 (CUI 
H2N.CH(CH3)COOH)P, SCF/STO-6G 

+(H3N)CH(CH3)COOHjP, C02jp, 
C02(C1-)2jp, R*C=O)P 

C02jp, C02(Cl-)2)p, R*C=OjP SCF/STO-6G 

H20-Nat, H20-Na+jP c,i SCF/4-31G 

models contained all ions within 
5-A interaction radius (e.g., the 
surface layer contained 5x5 
atoms for on-top sites and 4x4 or 

SCF/FSGO' 

4x6 atoms for interatomic sites) 

F-1: F-(Li+)s)p 
He-F-(Li+)6]P,b He-F, HeLi+lP,O SCF/[12,8,5/1,1/1,1] 

electronic structure of (111) 351 
surface atoms, binding 
energy 

energies, reaction path of 
H-D exchange 

stretching frequency, 
potential curve for Hz 
dissociation 

HP, transition structure, 
reaction barrier 

properties of surface 
hydroxyls 

equilibrium geometry, binding 352 

valence electron levels, OH 353 

symmetric reaction path of 75 

mechanism of formation and 354 

equilibrium distance of 355, 356, 
ad-atom, binding energy 357 
for various electronic 
states 

binding energies on different 
sites, equilibrium distance, 
influence of surface 
relaxation 

equilibrium distance of 
ad-molecule, binding 
energies 

binding energies of L and 
D forms 

energy and geometry of 
adsorption, v2 frequency 
splitting of COP 

relative binding energy on 
different Na+ sites 

binding energy for adsorption 
on different sites 

pairwise-additive potential of 
ad-atom-surface interactions 

359, 349, 
350 

360 

361 

362 

363 

364 

344 

a ) p  denotes embedding by an array of point charges. bSee footnote b of Table XIV. cSingle-ion model (SIM). dNearest-neighbor.model 
(NNM). e m  = 5 refers to the planar surface. fAn embedding point ion array is not used; hence, the cluster may lack ionicity. Cf. ref 359. 
#Note that correlation energy estimates employing this basis set are meaningless. h ( ) S  denotes embedding by a pseudopotential; cf. ref 272. 
'The Na+ ion is put on different sites with respect to the point charge array. 'Floating spherical Gaussian orbitals. The basis set is similar 
to the minimal closed-shell m 0 d e 1 . ~ ~ ' ~ ~ ~  

their electrons and nuclei (ghost functions) are added. 
The energy obtained, EA@), is lower than the energy EA 
calculated with the basis functions of A only, and the 
difference is defined as basis set superposition error 
(BSSE): 

(v .1)  EA = EA - EACB) 

paring the energy of the complex, Em, with the energies 
of the separated subsystems, EA(B) and E,),, obtained 
by ghost orbital calculations: 

(V.4)  AB' = E m  - EA(B) - E(A)B 
Equation V.4 has the advantage that the difference is 
taken between energies that are obtained by the same 
basis set. From eq V.l-4 follows There is also a BSSE for subsystem B: 

Instead of the interaction energy The only way to keep basis set superposition effects 
within tolerable limits (or small enough to render cor- 
rectians according to eq V.5 meaningful) is to properly 
balance the basis sets of anions and cations when 

AEAB = EAB - EA - EB (v .3)  
a corrected interaction energy, AEAB', is defined com- 
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dealing with clusters of them. In general, compared to 
standard atomic sets, additional diffuse functions on 
anions are mandatory while cations stabilize on expo- 
nent reoptimization for inner-shell orbitals. But, even 
if very carefully prepared basis sets are employed, the 
stability of the results with respect to the superposition 
of the orbitals of the other subsystems must always be 
checked by the Boys-Bernardi method.369 There is no 
excuse not to do this. However, as far as the possi- 
bilities to eliminate the BSSE is concerned, the scien- 
tific community is split into roughly three parties. The 
first demands the basis set must be extended until the 
Boys-Bernardi estimate indicates that superposition 
effects are sufficiently small. (This is only rarely pos- 
sible.) The second group says we will obtain a better 
approximation to the full basis set limit if the (full) 
Boys-Bernardi correction is applied to our result. (This 
view is based on vast empirical data and supported by 
arguments from intermolecular perturbation theory. I 
share this view.) The opinion of the third group is as 
follows: correction yes, but only part of the Boys- 
Bernardi estimate should be applied. (It is argued that 
part of the ghost functions are filled with electrons in 
the real complex.) The latter position was taken in the 
studies on “in-crystal” polarizabilities of anions265p268 and 
on F+ centers in Mg0.271 

The danger of BSSE is particularly large if standard 
minimal basis sets of atoms are employed for anions and 
cations. While all orbitals are occupied on the anion, 
on the cation a whole valence shell is empty. By ne- 
cessity, the electrons of the anion will make use of them 
to lower their energy and charge will be artificially 
transferred. Hence, serious doubts emerge, e.g., as to 
the significance of the STO-3G study on the off-center 
instability in KC1:Li.370 The stability curves of the Li+ 
ion will be massively affected by the BSSE, and the 
charge transfer on which the model suggested in ref 218 
is based will be largely an artifact. For example, the 
stabilization energy of the (HO)2P02--.Mg2+ complex 
(1445 kJ/mol from extended basis sets271) is heavily 
exaggerated by the STO-3G basis set (2080 k J / m 0 1 ) ~ ~ ~  
that is due to the BSSE. We note that better balanced 
results for ionic complexes are obtained373 by another 
minimal basis set, MINI-l.59-62 For the complex men- 
tioned, it yields 1390 kJ/mol and after correcting the 
BSSE only 1300 k J / m 0 1 . ~ ~ ~  (The insufficient descrip- 
tion of anion polarizabilities by minimal basis sets ac- 
counts for the difference to the extended basis set re- 
sult.) An example of a small, but properly balanced, 
basis set is the “minimal closed-shell’’ model used in a 
CO study of LiH.lg7 Just one orbital is employed for 
the electron pairs attributed to Li+ and H-. The op- 
timum exponents (2,6875 and 0.772 42 for Li+ and H-, 
respectively) were determined for ions embedded in a 
point charge array.365 The crystal field changed the 
exponent for the hydride ion from 0.6875 (free ion) to 
0.77242, while it had no effect on the lithium ion. This 
means that the latter is not polarized and is a point 
charge at  this level of approximation. 

Another computational problem concerns the lattice 
relaxations accompanying formation of surfaces, defects, 
and chemisorbates. They involve so many atoms that 
they can only be modeled by pair-type potentials. 
Hence, in the future it will be very important to com- 
bine ab initio techniques (which yield accurate energies 

Sauer 

in a localized region) with potential models (which allow 
relaxation of many atoms of the lattice) in a consistent 
way to make possible the theoretical determination of 
relaxed geometries over extended areas of the solid from 
the condition of vanishing forces on all nuclei of the 
lattice including the local region. An important step 
in this direction has been made by Vail et al.271 

V I .  Semiconductors and Insulators 

A. Overview 

The overwhelming majority of theoretical papers on 
semiconductors and insulators is devoted to bulk and 
surface band structures (see, e.g., the exhaustive review 
on semiconductor, especially silicon, surfaces374) and 
employ special techniques of solid-state physics (cf. 
sections I and 1II.D). Recent applications of “total 
energy” density functional methods that are able to 
make structure predictions have been mentioned in 
section 1II.D. In contrast, the number of “true” ab initio 
calculations (in the sense of exact-exchange calculations, 
which are the subject of this review) is modest. They 
mainly deal with local geometry, energetics and elec- 
tronic structure of defects, impurities, and chemisorp- 
tive bonds. 

Because of its prominent role in electronic devices, 
most effort was spent on silicon (Table 18). Charts 6 
and 7 show models of surface and chemisorption sites 
for the (111) and (100) surfaces, respectively. Ab initio 
studies on ~ilyl-diborane,3~~ H3Si-B2H5, and fluorinated 
~ i l y l b o r a n e s ~ ~ ~  were made to look into the mechanism 
of chemical vapor decomposition processes (CVD) by 
which gaseous silanes and silane/dopant gas mixtures 
decompose into amorphous silicon. 

Carbon structures (Table 17), in particular diamond, 
are studied not only because of interest in these ma- 
terials but also as a useful starting point for later in- 
vestigations on silicon and germanium. The structural 
aspects of bonding in silicon carbide polytypes have also 
been 

There are also some results on A”’-BV semiconduc- 
tors (Table 19). 

B. Carbon Structures 

We do not aim at an exhaustive review of the vast 
literature on carbon clusters, mention but rather two 
groups of papers of more general interest. 

Fink et al.278 propose a special embedding technique 
and apply it to investigate the electronic properties of 
graphite and diamond surface sites as well as the 
chemisorption and surface diffusion of hydrogen on the 
(100) surface of diamondem Similar to Whitten (section 
IV.C), they divide the model in an interior part, C, and 
an exterior part, S. The wave function e of the interior 
part is determined self-consistently, while for the ex- 
terior part a “frozen” solution (ps is used that provides 
the proper potential for cpc. In section 1V.E we argued 
that in solids with covalent bonds and, hence, in dia- 
mond and graphite, overlap between atoms is crucial 
for bonding. It seems that a technique278 treating this 
overlap in an approximate way could be more naturally 
applied to systems where overlap between interior and 
exterior parts is small as in molecular crystals (cf. ref 
277) and ionic crystals. For solids with covalent bonds 
the recommendations of section 1V.E should be fol- 
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TABLE 17. Calculations on Models of Diamond and Graphite: Bulk, Surface, and Chemisorption’ 
subject model method/basis set aims ref 

graphite c6, C24, cu (high spin): C6H6, SCF/DZ CC bond distance, stability, valence 378, 379 

diamond ClOH16 (adamantane), C35H36, CUHM SCF/DZ CC bond distance, stability, valence 379 
C24H12, CUH18r CMH24r C150H30 electron levels 

(111) diamond surface 
relaxation and 
reconstruction 

neutral vacancy in (‘CH314 
diamond 

chemisorption of 0, Op,  
and H on graphite 

H on (100) of diamond 

H on (111) of diamond 

muonium in diamond muonium-CloH16 

CloHs (naphthalene), O-CIOH8, 
Oz-CioH8, H-CroHs 
H-C5 embedded 

H-C(CH& 

(adamantane structure) 

SCF/6-31G* 
SCF/DZ 
SCFjSTO-3G 

SCF/4-31G 
SCF/6-31G* 
SCF/EC-DZ 
SCF/EC-DZP 
SCF/STO-3G 
GVB-CI/VDZ 

UHF/STO-3G 

SCFc 

SCFISTO-3G 

electron levels 
CC bond distance 
Compton profile 
position of surface atom, dangling 

position of surface atoms 
bond IPd 

electronic structure, relative energies 
of low-lying electronic states 

equilibrium distance above surface, 
binding energy 

binding energy, activation energy of 
adsorption, surface diffusion barrier 

equilibrium distance, binding energy, 
vibrational frequency of ad-atom 

location (tetrahedral interstitial space), 
hwerfine interaction, vibrationallv 

377 
380 
381 

382 

383 

384 

385 

386 

387 

a;eraged spin density 

center of an extended C-C bond). 
muonium in diamond mUOniUm-cloH16, H - C ~ O H ~ ~  UHF/STO-3G + location (tetrahedral interstitial space, 388 

10s (muonium) 
hyperfine coupling constant 

a Cf. ref 379 for additional references to theoretical investigations on carbon clusters. Cf. Chart 6. Basis not specified. IP = ionization 
potential. 

CHART 6. Different Models for  (111) Surface Sites of Silicon and Diamond” 

a C e 

“Broken lines indicate dangling bond directions; small full circles are terminating hydrogen or siligen atoms. Key: (a) Si4Hg, (b) SisH15, 
(c) %HI, (d) Si10H15, (e) Si&, (f) Si9H16. In chemisorption studies (e.g., ref 401), (a) and (b) are used to model the on-top, (c) the eclipsed 
hollow site, and (d)-(f) the open hollow site approach. 

F i g u r e  9. Dependence of the energies of the highest occupied 
and lowest unoccupied orbitals for models of graphite (full circles, 
C@H& and diamond (open circles, CnCHnH, nc = N(4.P - 1)/3, 
nH = 4M)  on N.319 

lowed, namely to cut atoms rather than bonds. In 
summary, diamond and graphite do not seem to be 
favorable cases for application of Fink’s technique, 
which did not prove superior to other (simpler) possi- 
bilities of terminating a model. 

For carbon clusters probably some of the largest SCF 
calculations to date have been recently made378*379 (cf. 
Table 17). Comparison was made of the spherical 
“Buckminster fullerene” (C,) with planar, single-sheet 
graphite fragments with 6, 24, and 54 atoms (& sym- 
metry). For these “free-boundary” clusters the spins 
of the dangling bond electron (6, 12, and 18, respec- 
tively) can be paired in many ways. However, albeit not 
lowest in energy, the high-spin forms (S = 3,6,  and 9, 
respectively) are most representative for graphite (a 
special case of “electronic” boundary conditions; cf. 
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TABLE 18. Calculations on Silicon (and Germanium): Bulk, Surface Sites, Chemisorption, Defects, and Impurities 
subject model method/basis set aims ref 

(i) Bulk 
SCF/3-21G 
SCF/6-31G* 
SCF/EC-DZ 

geometry 
geometry 
variation of saturator Si-H bond 

harmonic force constants, phonon 

optimum orbital exponent of siligens 

lengths, band gap, charge density 

band structure 

389 
377 
390 

292 

291 

391 

79, 392, 
393 

394 

76 

395 

396 

77 

397 

398 
399 
386 

400 

401, 402 

403, 404 

291 

293 

405,406 

389 

407 

408 

409 

299 
383 

298 

parameters of a force field 
model of bulk Si 

GVB-CI/EC-DZ 

SCF/EC-DZ 

(ii) Surfaceb 
ab initio effective core 

potentials for silicon 
(111) surface relaxation 

Si, Siz, H3Si', H3SiOZ' SCF, GVB, GVB-CI/DZ, 
ECP-DZ 

IP,' EA,' excitation energies 

SCF/STO-3G, SCF/4-31G, 

SCF/EC-DZ 
SCF/EC-DZ 

position of surface atom dangling 
bond IPc 

harmonic force constants of surface 
and subsurface atoms 

position of surface atoms, dangling 
bond ionization potential, and 
energy dispersion curve, Si (zp) 
core level shifts 

(111) surface, parameters 
of a force field model 

( l l l ) - (Zxl )  surface 
electronic nature 
and relaxation 

(11 1)-(7x7) surface 
reconstruction 

GVB-CI/EC-DZ 

'SiH,, Si&, 'Si3H3, ('SiHz)2 SCF/4-31G (plus estimate estimate of relative stability of 
of influence of correlation 
and polarization functions) 

different models of 7x7 
reconstruction (Lander vacancv. 

" I  

milk stool) 

excitation, and ionization energies 

Si (2p) core level shifts 

electronic and geometric structure, 

surface geometry! electronic state, 

GVB/EC-DZ(P) 
GVB-CI/EC-DZ(P) 
GVB-CI/ECP-DZ 

steps on the (111) surface 

(100) surface reconstruction, 
relaxation, and electronic 
nature 

H,Si-Si-SiH, 
HzSi-Si-SiH, 
Si9Hlzu 

iii) Chemisorotion* 
H on Si(lOO), vibrational 

spectra of monohydrated 
and dihydrated surface 
atoms 

SiQH14 
HzSiZ(SiH3),, HzSizH4 

H S i H 

..., Si40H,2Al4 
H-SiH,, H-Si(SiH,), 
H-Si(SiHJ3 

H-SilOHIS 
H-Si6HQ 

'SCF/3-21G 
SCF / 3-21G(*), 

surface geometry 

MP2/3-21G(*) 
SCF/6-31G** 

SCF/6-31G*, MP2/3-21G 

SCFIEC-DZPP 
SCF/DZP' 

SCF/VDZ(P)f 
TC-SCF*/VDZ 

SCF/STO-3G 

harmonic force constants, equilibrium 

harmonic force constants 
equilibrium distance, binding energy, 

vibrational frequency 

geometry 

equilibrium distance, well depth, 
barrier height, vibrational frequency 
of motion normal to surface 

vibrational frequency 
equilibrium distance, binding energy, 

equilibrium distance, vibrational 
frequency, binding energy 

geometries of surface complexes Si 
(Zp) and 0 (Is) core levels 

geometry of surface radical, IP,' 
excitation energies 

equilibrium distance and vibrational 
frequency of 0 normal to the 
surface, binding energy, 0 (Is) core 
level shift 

H on Si(ll1) (on-top site) 

H on Si(ll1) (3-fold open 
site) 

F and C1 on Si(ll1) (on 
top, eclipsed, and open 
site) 

F and C1 on Si(ll1) and 
Ge(ll1) (on top) 

0 and Oz on Si(ll1) 

O2 on Si(ll1) 

0 on Si(lOO), (on top, bridge, 
and center sites) 

X-Si(SiHJ,, X-Si1&Il5 (on top), SCF/VDZ 
X-Si,H, (eclipsed), X-SilOHI3 
(open) 

X-Si4H7, X-Ge,H, SCF/EC-DZP,"h 
SCF/EC-DZP' - - 

H,SiO,," H3SiOSiH30 SCF/EC-DZ 
H,SiO' a GVB/EC-DZ 
- 

H3Si02', HzSi'-SiHz-SiHzOz' GVB-CI/DZ 

O-Si(SiH3)?, CASSCF/basis set 
(H3~)zSi-O-Si(SiH3)z, not specified 
O-S+HB 

(iv) Defects and Impurities 
SCF/3-21G 
MP3/3-21G 

structure of the (450 "C) 
oxygen donor (interstitial 
oxygen silicon-oxygen 
ylide) 

oxygen uptake by silicon 

fluorinated amorphous Si 

Si(SiHJ4 
Si(OSiHJ(SiH,),, 

0 [Si(SiH,),] (SiH,), 

geometries, relative energies, 
ionization potentials 

(H3Si)3Si-Si(SiH?)3, SCF/EC-MB 
(H3Si)3Si-O-Si(SiH3)3 

SiH3F, SizH5F SCF/3-21G 
SiH.F+. SiH.F+ SCF/6-31G* 

local geometry, electron distribution 

geometries, vibrational frequencies, 
energetics 

impurity ionization energies, term 
orderings, term splittings 

electronic structure, relative energies 
of low-lying electronic states 
('E, 'TI, 5Az) 

electronic structure, relative energies 
of low-lying electronic states 

MP3/6-31G* 
SCF/EC-DZ interstitial transition metals 

(Mo, M+, Mz+) on Td sites 
of undistorted Si lattice 

neutral vacancy o('SiH,), GVB/MB, GVB-CI/VDZ 

si(~iSi,)~.i (*~iSi,)1 CI/EC-DZ, CI/EC-DZP neutral vacancy 

denote siligens; cf. section IV.E.4.291 bFor model of (111) and (100) surface and chemisorption sites, see Charts 6 and 7, respectively. 'IP = 
ionization potential; EA = electron affinity. dGeometric boundary conditions imposed. 'DZ basis set only on terminating H atoms. 'Polarization p 
function on the ad-hydrogen atom only. 8TC-SCF = two-configuration SCF. hPolarization function on first-layer surface atoms and on the ad-atom 
only. is denotes pseudoatoms; cf. section IV.E.6. 
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TABLE 19. Calculations on Surface and Chemisorption Sites of Semiconductors 
subject 

relaxation and reconstruction of the 
(110) surface of aIrl-bV 
semiconductors (a = Ga, Al, B; 

oxidation gf the GaAs(ll1) surface 

oxidation of a1I1-bV semiconductors 

b = As, P, N) 

model 
H2abHz 
(Hza)zbH, (Hzb)zaH, 

Hza.bH.aH.bHz 

H3As, H3Ga, HzAsGaHz 
H3As0, H3Ga0, H2Ga.H2As0 
C13b=0 (b = N, P, As, Sb) 

method/basis set aim ref 
SCF/EC-DZP geometry parameters for surface atoms 410 
SCF/EC-DZ (surface strain, reconstruction angle) 411 

SCF/EC-DZP geometries, vibrational frequencies, core 411 
GVB-CI/EC-DZP level ionization potentials 392 
GVB-CI/EC-DZP length, vibrational frequency, dissociation 412 

energy of the b-0 bond 

TABLE 20. C-C Bond Distances (pm) in  Graphite and Diamond: Convergence of Molecular Model Results229 and 
Comparison with Crystal Orbital Calculations1g2 

system basis set r,o system basis set r,b difP 
C6H6 STO-3G 138.7d CZH6 STO-3G 153.gd 15.1 

DZ 138.4O CZH6 DZ 153.d 14.6 
CBH6 obsd 139.78 CZH6 obsd 152.6h 12.9 
graphite CO/STO-3G 145' (146)" diamond CO/STO-3G 155.5' (154.3)b 10.5 
C24H12 DZ 140.1e (141.4)" C10H16 DZ 154.2e (153.8)b 14.1 
CS4HlB DZ 140.4e (141.7)" C3SH36 DZ 154.0e (153.6)b 13.6 
CMH24 DZ 140.6O (141.9P CMH64 DZ 153.ge (153.5)b 13.3 
graphite obsd 142.1h diamond obsd 154.5h 12.4 

"Projected results (re + 6) in parentheses; 6 = obsd(C6H6) - calcd(C6H6). bProjected results (re + 6) in parentheses, 6 = obsd(C2H6) - 
calcd(C2H6). r,(diamond) - r,(graphite). Reference 7. e Reference 379. 'Calculation for this review. #ro value (Langseth, A.; Stoicheff, B. 
P. Can. J.  Phys. 1956, 34, 350). hFor reference to experimental work, see quoted theoretical papers. 'Reference 192. jReference 145. 

CHART 7. Different Models for  (100) Surface Sites of 
Silicon and Diamond" 

" Broken lines indicate dangling bond directions; small full cir- 
cles are terminating hydrogen or siligen atoms. The Si3H6. (a), 
Si6Hlz (b), and Si,H8 (c) models are used to study on-top, bridge 
and center sites of chemisorbed atoms (e.g., ref 405). The SiSH,, 
model (d) is adopted for the monohydrated, reconstructed Si(100) 
surface.397 

section 1V.E). Nevertheless, hydrogen-saturated models 
of graphite and diamond (Table 20; Figure 9) are ex- 
pected to converge more smoothly toward the bulk 
properties. The SCF calculations (DZ basis set) on the 
largest model studied, C 1 d m ,  involved 1560 contracted 
basis functions. As storage and rereading of the cor- 
responding enormous amount of two-electron integrals 
would have been impossible, even on the CRAY-2 su- 
percomputer employed, use was made of a so-called 
"direct" SCF program that recalculates the integrals in 
each iteration of the SCF process. 

Thanks to these benchmark calculations there is the 
(rare) possibility to judge the convergence of the mo- 

lecular approach in dealing with solids on results for 
models of increasing size. Table 20 and Figure 9 show 
some r e s ~ l t s . ~ ~ * ? ~ ~ ~  The most important conclusion is 
that the convergence behavior of different properties 
is very different. While the geometry (CC bond dis- 
tance, Table 20) certainly belongs to the properties that 
converge nicely, convergence of one-electron energy 
levels is very poor (Figure 9). The CC distance (Table 
20) calculated for the adamantane model, C10H16 (X), 
of diamond changes by only 0.3 pm when passing to the 
largest model, of the series. Similarly, the result 
for the C24H12 model of graphite changes by only 0.5 pm 
when passing to the C9sH24 model. Note that the error 
due to the theoretical approach chosen, SCF/DZ basis 
set, is -0.7 pm as the calculation on C6H6 indicates; cf. 
Table 1. The projected bond lengths (obtained by 
adding an increment to correct for such errors; cf. sec- 
tion 1V.G) are slightly shorter (by less than 1 pm) than 
the observed values. 

Due to poor convergence of one-electron energy levels, 
even for the largest model of graphite, C150H30, the en- 
ergy gap between occupied and unoccupied states is still 
about 4 eV (Figure 9). While the value of about 4 eV 
extrapolated from these calculations for the, work 
function of graphite is in reasonable agreement with the 
observed value (4.9 eV), the extrapolated band gap of 
diamond (about 10 eV) is definitely larger than the 
experimental value of about 4.6 eV.379 This discrepancy 
is attributed to neglect of electron correlation (cf. sec- 
tion 1II.C) which also prevents getting reasonable values 
for cohesive energies (cf. sections 1II.D and 1I.C). 

C. Chemisorptlon Studies 

Tables 21-23 illustrate the analogy between Si-H, 
Si-F, Ge-F, Si-C1, and Ge-C1 bonds on surfaces and 
in molecules. The linear Si-H molecule (Table 21) is 
not an adequate model of a Si-H bond on a Si(l l1) 
surface since coordination of silicon and hybridization 
are totally different for both species. (Note, however, 
that low-valent silicon hydride413 and silicon fluoride414 
species have attached great interest because of their role 
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TABLE 21. Molecules as Models of the H-Si(ll1) Bond and of the Si-Si Bulk Bond of Solid Silicon (Units: Equilibrium 
Distances (re),  pm; Vibrational Frequencies (we), cm-'; Bond Dissociation Energies (D, ) ,  kJ/mol) 

H-Si H-SiH3 H-SiH2-SiH3 H-Si(SiH& H-Si(ll1) surface 
re 6-31G* 147.5" 147.8" 

DZP 153.1b 147.gb 148.6b 
obsd 153.1' 148. l"vd 148.6a*d 

W e  DZP 2136b 2328b9e 2314b8' 
(2099)b (2288)bf (2274) b,f 

obsd (harmonic) 2042' 237Vd 
obsd 197lC 2187".d 21608 2073b.d 

De 6-31G* 210h 317' 305h 
DZP 203b 317b 291b 
obsd 295' 272,' 37%' 3611 209-309bvd 

Si-Si (Si-Si)3P H3Si-SiH3 H,Si-Si(SiH& crystal 
re  obsd 224.6 (3Zg)k,d 23 2. 7d3' 235dJ' 

STO-3G 210.5" 222.4k 224.3' 242" 
3-21G 231.6" 238.2' 238.3" 
6-31G* 222.7k 232.8k 235.3' 236.59 

"Reference 52. bReference 399. CBiirger, H.; Eujen, R. Top. Curr. Chem. 1974, 50, 1. dFor references to experimental work see the 
quoted theoretical papers. e Diatomic oscillator model, finite silicon mass (28). f Rigid-cluster model, infinitely large silicon mass; cf. ref 399. 
CPfeiffer, M.; Spangenberg, H. J. Z. Phys. Chem. (Leipzig) 1966, 232,47. Calculated from energetics of ref 416. 'Reference 415. J Walsh, 
R. Acc. Chem. Res. 1981, 14, 246. kReference 300. 'Reference 53. mReference 146. "Reference 416. OReference 389. PCyclic structure. 
Q Reference 377. Reference 7. 

TABLE 22. Results for Si-F and Si-C1 Bonds on Silicon Surfaces and in Molecules (Units: Equilibrium Distance ( re) ,  pm; 
Harmonic Vibrational Frequency (ue), cm-'; Dissociation Energy (De) ,  kJ/mol) 

(H3Si)S-X/H1SSilo-X 
X = F  x = c1 X3Si-X H3Si-X H3Si.H2Si-X 

basis set basis set X = F X = C1 X = F X = C1 X = F 
r, 3-21G 158.4" 163.5" 219" 1.64.4' 

6-31G 162.5e 168.2 2191 VDZ 168/168b 224/224b 
6-31G* 155.7",e 159.4 207h 160.3' 
EC-DZ(P)ja 157.71 204 EC-DZ(P)'sk 161' 209' 
obsdf 155.2" 204b 159.3" 205h 203c 

m = 28' m =  mm m =  28' m = 

W, 3-21G 845" 
6-31G 7570 
6-31G* 849O 
obsdf 801" 

943" 925' 
VDZ 784 605b 489 326b 

952jS 588jsP EC-DZ(P)c*k 917 708' 543 362c 
875' 551" 

D, 3-21G 484" 390" 2648 
VDZ 328b 104b VDZ 314/311b 160/158b 
6-31G* 535" 466" 34Oe 447 EC-DZ(P)',k 425c 35OC 
obsdf 600, 686" 643" 

" Reference 415. bReference 401. Reference 403. eReference 417. f For references to experimental data, see quoted theoretical papers. 
#Calculated from energies of ref 415 and 52. hReference 52. 'Reference 418. 'Reference 419. kNo polarization functions on hydrogen 
atoms. 'Diatomic oscillator model, finite silicon mass (28). Rigid-cluster model, infinitely large silicon mass; cf. ref 401. pEC-DZ(P) 
calculation. 

TABLE 23. Results for Ge-F and Ge-Cl Bonds in Molecules and on Ge(ll1)  surface^'^^"^ (Units: Equilibrium Distances 
(rJ.  om: Vibrational Freauencies ( w J .  cm-') 

H3Ge-Fb Ge4Hg-Fc H3Ge-Clb Ge4H,-Clc 
re calcd" 169.7 

obsdd 173.5 
177 215.5 221 

215.0 207 f 3 
Ge4Hg-F' Ge2Hg-Clc 

H3Ge-Fb m = 74' m = mf H3Ge-Clb m = 74e m = mf 

W e  calcd"98 752 728 649 440 420 346 
obsd" (extrap) 689 (667) (595) 423 (404) (333) 

" SCF/EC-DZ(P); no polarization functions on hydrogen atoms. Note that calculations on H,GeX molecules419 and on Ge4Hg-X models,* 
although a t  the same level, differ in details such as type of core potential and exponents of polarization functions. bReference 419 (d 
exponents on F and C1 equal 0.8 and 0.75, respectively). cReference 403 (d exponents on F and C1 equal 1.62 and 0.56, respectively). dFor 
references to experimental work, see quoted theoretical papers. e Diatomic oscillator model, finite germanium mass (74). f Rigid-cluster 
model. infinitelv laree germanium mass: cf. ref 403. #Harmonic. 

in the silicon chemical vapor deposition and surface 
etching processes; cf. ref 413 for a comprehensive study 
of geometries, force constants, and vibrational spectra 
of SiH, SiH2, SiH3, and SiH, and ref 414 for a study on 

SiF, SiF', S i p ,  SiF2, SiF2+, SiH3-F, SiF3-F, SiH3-SiH3, 
SiH3-SiF3). In contrast, observed data for molecules 
like SiH,, Si2H6, SiH3X, and Six, (X = F, C1) are a 
valuable source of information for surface species 
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without making any calculation. It belongs without 
doubt to the appealing features of the molecular ap- 
proach that models are obtained that really exist and 
can be investigated by experiments. Furthermore, 
calculations on such molecules can tell a lot about re- 
liability and failure of a particular quantum chemical 
method. The specific results for different basis sets and 
models presented in Tables 21-23 detail the general 
comments on the performance of different levels of 
methods made in section 1I.B (Table 1) and 1I.C and 
are an example of the “hierarchic” approach to solid- 
state problems (section 1V.G). When chemisorption of 
F and C1 on Si(ll1) surfaces was studied, it was possible 
to treat a model as large as X-Si10H15 when the basis 
set quality was limited to valence double-{ (VDZ).401 
For the smaller X-Si(SiH3)3 cluster, virtually the same 
results were obtained but significant changes occurred 
on passing to a basis set including polarization func- 
t i o n ~ . ~ ~ ~  Parallel changes are observed for the Six4, 
SiH3X, and Si2H5X molecules when passing from 
split-valence (3-21G, 6-31G) to polarization-type basis 
sets (6-31G*). In accord with common experience 
(section II.B, Table l), the latter types of basis sets 
(EC-DZP, 6-31G*(’)) yield reliable results for equilib- 
rium distances and harmonic vibrational frequencies. 
When the vibrational frequencies of chemisorbed H, F, 
and C1 atoms were calculated perpendicular to the Si- 
(111) and Ge(ll1) surfaces, the ad-atom was assumed 
to vibrate against the rigid surface; i.e., the surface atom 
was given an infinitely large mass (rigid cluster mod- 
e1).399,401y403 Comparison with results of a diatomic os- 
cillator model using the genuine masses of Si and Ge, 
28 and 74, respectively (albeit it still neglects coupling 
with adjacent Si-Si and Ge-Ge bonds, respectively) 
shows that the assumptions of the dynamical model 
sensibly affect the results. Note (i) that the force 
constants were the same for both frequency estimates 
and (ii) that these constants were obtained by quantum 
chemical ab initio calculations on much larger models, 
e.g. (H3Si)3Si-X. For chemisorbed hydrogen, due to its 
low relative mass, the rigid-cluster approximation seems 
justified. Nevertheless, for finer details better models 
are needed. 

To assist assignment of high-resolution infrared data 
of Si(100) surfaces covered with H atoms, ab initio 
calculations were made of the Si-H (and Si-D) fre- 
quency ~ p l i t t i n g . ~ ~ ~ ~ ~ ~ ~  The monohydride phase in- 
volving vicinal )SiH-SiH( pairs and the dihydride 
phase involving geminal ) SiH2 species were considered. 
Force constants were evaluated for the H3Si-SiH3 and 
H3Si-SiH2-SiH, models, respectively. To suppress in 
the frequency calculation (GF method) undue coupling 
with motions of saturator H atoms a different mass (mD 
= 2) was assumed for the latter, i.e. the saturator atoms 
were deuterium atoms (Figure 10). In turn, when 
deuterium adsorbates were considered, the saturator 
atoms were hydrogen atoms. A much larger model was 
adopted in molecular dynamics simulations of the in- 
frared line shapes for the dihydride phase:420 a slab 
containing 16 H atoms, 16 first-layer Si atoms, and 12 
second-layer Si atoms (Figure 10). The Si-H force 
constants were transferred from the much smaller 
H3Si-SiH3 model. The Si-Si force constants in prin- 
ciple could be obtained from ab initio calculations of 
suitable bulk models as Si(SiH3)4 (cf. ref 292). Actually, 

monohydr ide di hydr ide 

monohydr ide 

@ first layer @ second layer 
Figure 10. Models for monohydride and dihydride phases of 
hydrogen-loaded Si( 100) 

they were taken from an empirical bulk force field.420 
As expected (sections 1I.B and ILC), the calculated 

dissociation energies for surface Si-H and Si-F bonds 
(Tables 21 and 22) are in error by over 50 and 100-200 
kJ/mol, respectively. Only on inclusion of correlation 
does the error drop to acceptable limits (about h20 
kJ/mol at the simple MP2 level) as work on SiH4, 
SiH3F, SiF4, and Si2H5F  indicate^.^^^?^^^ We mention 
also a related study on H2 dissociation on boron surfaces 
modeled by B6 clusters.421 Although the theoretical 
approach chosen (RHF/DZ basis set) does not yield 
reliable information on bond dissociation energies 
(sections 1I.B and II.C), conclusions are drawn on the 
mechanism of reactions involved in the growth of solid 
boron by the chemical vapor deposition technique. A 
more natural way to deal with bond-breaking processes 
is a multireference ansatz as in the generalized va- 
lence-bond (GVB) or two-configuration SCF (TC-SCF) 
methods (cf. section 1I.C). Table 18 includes further 
examples of striking failures of the SCF method: 
chemisorption of barrier for penetration of 
chemisorbed H atoms through the Si(ll1) surface,4oo 
and (2 X 1) reconstruction of Si(l l1) and Si(100) sur- 
f a c e ~ . ~ ~ - ~ ~  

In the near future substantial progress can be ex- 
pected with an adequate description of electron corre- 
lation effects for chemisorption problems for two rea- 
sons. It not only emerges from Tables 21-23 that 
models including only very few surface atoms will 
provide the basic answer, but there are also sugges- 
tionsm1?* on how molecular orbitals of a model that are 
not involved in the chemisorptive bond can be identi- 
fied, namely by a corresponding orbital transformation 
with respect to the cluster without the ad-at~m.~Ol 
Computational work of a correlation energy calculation 
can be reduced by excluding these orbitals already from 
the integral transformation step.404 Note that a similar 
idea has been implemented in Whittens technique 
(section 1V.C). 

When compared with reactions of molecules in the 
gas phase, the present stage of chemisorption studies 
looks premature not only because of a very approximate 
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wave function but also because of the still rather prim- 
itive treatment of nuclear degrees of freedom. For 
molecules it is now generally accepted that a meaningful 
comparison of energies can only be made for completely 
optimized structures. In contrast, most chemisorption 
studies use rigid surface geometries (Tables 21-23). 
Even for naked surfaces only partial geometry opti- 
mizations were reported (Tables 17-19). The main 
problem when relaxing geometry parameters of models 
of surface sites, chemisorbates, defects, etc., is the 
boundary to the bulk (cf. the remarks at  the end of 
section V.C). A final answer can only be expected when 
the.coordinates of a very large region of bulk atoms are 
relaxed. This is only possible by force field type po- 
t e n t i a l ~ ~ ~ ~ ~ ~  whose parameters are ideally derived from 
calculations of the same type as employed for the small 
model investigated. 

V I  I .  Zeolites, Silica, and Related Materials 

A. Introduction 

and sil icate~,4~~ the most abundant chemical 
compounds on earth, are as important a subject for 
basic research in mineralogy and solid-state chemistry 
as is Si02, an ingredient of many electronic devices, in 
solid-state Zeolites, the microporous three- 
dimensional alumosilicate have found wide 
industrial applications as ion exchangers, molecular 
sieves, and ~ a t a l y s t s . ~ ~ ~ ~ ~ ~  The (not yet understood) 
role of oxides as supports of metal catalysts should be 
also mentioned.429 

In these oxides, the electropositive component, i.e., 
most frequently silicon or aluminum, is tetrahedrally 
coordinated by oxygen atoms and the corresponding 
TO4 tetrahedra (T = Si, Al, ... ) are the primary building 
units of their complex structures. Higher coordinations 
of the central atoms (predominantly six, but also five 
or eight) play a minor role. The negatively charged 
aluminosilicate frameworks of zeolites are (hypotheti- 
cally) formed when Si atoms of a Si02 network are 
isoelectronically replaced by Al- ions. Framework-ex- 
cluded metal cations (or protons) are necessary to 
compensate the framework charge, and the general 
formula of zeolites is M+[ (AlO& (Si02),].zH20. The 
Si/A1 ratio of zeolite frameworks can range from 1 to 
infinity, and virtually pure Si02 micropore structures 
may be obtained. These materials, which may be con- 
sidered as microporous silica modifications rather than 
as high-silica zeolites, proved very efficient catalysts, 
in particular for the conversion of methanol into hy- 
drocarbons. An example is ZSM-5.430 Figure 11 shows 
the formation of its channel system by a particular 
connectivity pattern of Si04 tetrahedra. First, 12 Si04 
tetrahedra are linked together to the secondary building 
unit (SBU) shown in Figure l l a .  The ZSM-5 frame- 
work structure can be completely assembled by apply- 
ing symmetry operations to this SBU. The individual 
SBUs in a chain (Figure l l b )  are related by a 2-fold 
screw axis, and neighbored chaiis of a layer (Figure l lc) 
are related by mirrors. The 10-membered silicate rings 
formed this way constitute the walls of channels. There 
are two types of channels (straight and sinusoidal) that 
intersect a t  right angles (Figure l l d ) .  

Since there are many different types of secondary 
building units and connectivity patterns, a large number 

a 
b 

Figure 11. Framework structure of ZSM-5 type zeolites.430 The 
positions of the tetrahedral Si atoms are shown only. Lines 
represent T-0-T linkages with the 0 atoms not shown. (a) 
Secondary building unit. (b) Chain of secondary building units. 
(c) Layer consisting of annealed chains and formation of ten-  
membered ring openings. Two five-membered chains of TO4 
tetrahedra investigated in the model calculations of ref 288 are 
marked. (d) System of straight and “zigzag” channels. 

of framework types can be designed. This as well as 
variations of the Si/Al ratio and cation content explains 
the vast variety of zeolites found in nature or prepared 
in the laboratory.&l Synthesis of new framework types, 
of high-silica forms of zeolites, and of a broad variety 
of zeolite analogues containing elements like Be, B, Mg, 
Al, P, Ge, Sn, and Fe have renewed the interest in 
structure-property relationships of such catalysts.4wPB 
Examples are microporous aluminum phosphates (Al- 
PO$ and MAPOs, e.g., SAPO (metal- or silicium-sub- 
stituted aluminum phosphates).432 
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"Key: (a) Two linked tetrahedra; (h) T-0-T bond of (a) pro- 
tonated; (e) T-0-T bond of (a) coordinated by an X(OH), 
group;m (d) T-0-T bond of (a) coordinated by an [X(OH,),I"+ 
ionZBz (X is, e.g., AI with n = 3); (e) model consisting of five tet- 
rahedra (terminating hydrogen atoms not shown);x'.",u (0 six- 
membered silicate ring.ls7 Large open circles symbolize oxygen 
atoms, medium-sized circles tetrahedral atoms (Si or AI), and small 
filled circles terminating hydrogen atoms. Bond length and angles 
specified are STO-3G r e s ~ l t s ? " , ~ ~ ~  

Nonempirical calculations on models of silica and 
zeolites have been reviewed in 1981 by Gibbs et a1.,281 
in 1982 by Gibbs,280 and in 1984 by Sauer and Zah- 
radnik433 and M e ~ e y . 4 ~ ~  Inferences from these as well 
as from calculations on related framework structures 
for minerals, glasses, and melts are considered by 
Navrotsky et al. (1985)435 and Gihhs and Boisen 
(1985).436 

For calculations on models of oxide catalysts by 
semiempiricalz6 or density functional see 
the pertinent review Applications of An- 
derson's ASED methodzl1 are described in ref 43&440. 

B. Models and Methods 

The TO4 and TOT structure fragments were subjects 
of the first nonempirical s t ~ d i e s ~ " ~ ~ ~  made as early as 
1972/1973. A fast development started with the works 
of Zupan and B u ~ , " ~  Sauer and Zurawski,3O' and 
Newton and G i b b ~ . 2 ~ ~  The first ab initio studies on 
models of zeolites also go back to 1980.363,M3 Since then, 
on the one hand, models of growing size involving, e.g., 
five or six TO4 tetrahedra (cf. Chart 8),287,zm,444 have 
been studied employing the STO-3G basis sets. On the 
other hand, molecules like orthosilicic acid, Si(OH)4, 
disiloxane, (H3SDZO, and disilicic acid, (HO)3Sip0, have 
continued to serve as models in increasingly sophisti- 
cated ah initio s t ~ d i e s , ' ~ ~ J ~ ~ ~ " ~ ~  some of which even 
include electron correlation at the MP2 l e ~ e l . ' ~ ~ J ~ ~  

Figure  12. Selected conformations of Si(OH), (D, or S, point 
groups). In the D, (s) structure all protons are staggered (5) and 
in the D, (e) structure all protons are eclipsed (e) with respect 
to the oxygen atoms. One structure can be converted to the other 
hy synchroneous rotations of the four protons about the respective 
Si-0 axis. All structures passed belong to  the S, point group. 
A convenient symmetry coordinate to describe this motion is 7 
= 1/4(~6215 + T~~~ - T~~~ - T ~ ~ ~ )  where T~~ is defined as the angle 
of plances abc and bcd (cf. Figure 13). Its sign is positive if the 
movement of the directed vector ba toward the  directed vector 
cd involves a right-handed screw motion. There are two special 
S, structures: one with all four protons eclipsed, S, (e), and one 
with all four protons staggered, S, (5). The potential shown is 
schematied Calculated are only the energies of the miminuma,&' 
and of the D, (s) structure?'7 The broken line connects points 
calculated under the constraint of a regular SiO, tetrahedron.& 

Figure 13. Equilibrium conformation of orthosilicic acid (6-31G* 
basis set)."9 

While the molecular structure of disiloxane was ob- 
served by electron diffraction, orthosilicic acid, due to 
its tendency to self-polymerize, has not yet been de- 
tected in experiments. Table 24 shows the results of 
geometry optimizations performed with basis sets of 
increasing quality for this molecule. The protons of 
Si(OH), give rise to a wealth of possible conformations. 
Figure 12 shows the most symmetrical ones only (DM 
and S,). The equilibrium geometry (S,  point group; 
Figure 13) is found for a torsional angle of -33' (6-31G* 
hasis It has been shown to be a true minimum 
on the energy hypersurface (all eigenvalues of the ma- 
trix of second derivatives were positive)451 while the & 
(staggered) structure is a saddle point (one negative 
eigenvalue)jl' The rotational barrier (energy difference 
between the DZd (staggered) and the equilibrium 
structure) amounts to 13.8 kJ/m01~~'  (6-31G*). On 
further extension of the basis set by adding p-type 
polarization functions on hydrogen atoms (6-31G**), 
one gets virtually the same value (13.4 kJ/mol)." Basis 
sets smaller than 6-31G* also correctly predict the SA 
structure to be more stable and yield rot&ional barriers 
of 7.5 kJ/mol (STO-3G),45z 5.4 kJ/mol (ST0-3G(*)),4" 
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TABLE 24. Molecular S t ruc ture  of Orthosilicic Acid: Results of Geometry Optimizations (SCF Calculations) for Basis Sets  
of Increasing Quality 

harmonic 
point OSiO OSiO type of force const 

basis set year ref group 0-H SiOH Si0 (4X) (2X) T optimizn calcd?' 
STO-3G 1980 296 - (96)' (109.5)' 165.3 (109.47)' (60)' 
STO-3G 
STO-3G 
STO-3G 
STO-3G 

STO-3G* 

4-31G 
3-21G 
6-31G 
3-21G 

3(4)-21G'*' 

6-31G* 
6-31G** 
6-31G'*' 
6-31G* 
6-31G* 
6-31G* 
6-31G** 

DZ 

3(4)-21G(*) 

1983 
1984 
1986 
1981 
1984 
1980 
1984 
1984 
1983 
1986 
1986 
1987 
1987 
1985 
1985 
1986 
1987 
1986 
1983 
1987 
1987 
1987 

454 
452 
417 
281 
452 
296 
452 
452 
454 
417 
417 
455 
456 
453 
453 
417 
129 
302 
454 
69 
451 
129 

U2d 
D2d 
D2d 
D2d 
s4 

s4 

s4 

D2d 
D2d 

D2d 
D2d 
D2d 
s4 

s4 

s4 

S4e 
s4 
s4 
s4 

s4 

D2d 

D2d 
D2d 

98.1 
98.3 
98.3 
98.1 
98.1 
(Wb 
98.4 
98.3 
93.8 
95.7 
94.1 
95.8 
95.1 
96.0 
95.8 
94.7 
94.2 
94.5 
94.7 
94.7 
94.7 
94.2 

109 
109.1 
109.1 
108.8 
109.6 

(109.5)' 
110.7 
111.4 
140 
128.4 
134.6 
127.0 
135.5 
114.5 
114.5 
117.2 
118.3 
129.5 
116.5 
117.2 
117.1 
118.8 

165.7 
165.5 
165.5 
165.4 
165.2 
160.5 
160.3 
160.2 
163.0 
164.2 
166.2 
164.1 
164.2 
161.8 
161.7 
162.9 
162.7 
162.2 
163.5 
162.9 
162.9 
162.6 

( 109.47)' 
112.4 103.8 
112.4 103.7 
107.1 114.2 
107.1 114.4 

(109.47)b 
113.5 101.6 
106.4 115.8 

(109.47)' 
111.5 105.5 
111.9 104.8 
107.2 114.1 

(109.47)b 
112.3 103.9 
109.5 109.4 
112.6 103.3 
112.6 103.4 
107.1 114.3 

(109.47)* 
106.4 115.8 
106.4 115.8 
106.6 115.4 

energy 
energy 
gradient 
gradient 
gradient 
gradient 
energy 
gradient 
gradient 
energy 
gradient 
gradient 
gradient 
gradient 
gradient 
gradient 
gradient 
gradient 
gradient 
energy 
gradient 
gradient 
gradient 

no 
no 
no 
yes (MI' 
no 
no 
no 
no 
no 
no 
yes (SI 
yes (SI 
no 
no 
no 
no 
yes (S) 
no 
no 
no 
yes (M) 
yes (M) 
yes (MI 

M = minimum; S = saddle point. 'Parameter fixed in optimization. We doubt this finding since the S4 structure has a lower energp2 
and the DZd structure should be a saddle point. dCombination of 4-21G basis set on 0 and 33-21G basis set on Si; d functions on Si and 0. 
eIn the original paper the point group was by error reported as D 2 d ;  cf. ref 2 of ref 451. fNot reported. 

and 4.8 kJ/mol ((4)3-21G*).453 No calculations for 
torsional angles below -60' have been reported so far. 
One may expect that the Dad (eclipsed) structure also 
corresponds to a saddle point with an even higher en- 
ergy than the &d (staggered) form. 

Table 24 reveals an interesting correlation of the 
conformation and the distortion of the Si04 tetrahe- 
dron: For the D2d (staggered) conformation (Figure 12) 
the two opposite OSiO angles (within the symmetry 
planes) are smaller than the remaining four OSiO an- 
gles. The Si04 tetrahedron is elongated along the S4 
axis. The opposite is true for the equilibrium S4 
structures ( r  <O), where the two opposite OSiO angles 
have the larger values and the tetrahedron is flattened 
(Figure 13). The results calculated for agree 
nicely with the electron diffraction data for the related 
Si(OCH3), molecule.457 The two opposite OSiO angles 
are 115.5', and the point group is S4 with r = -56'. 
Even the deviation between the observed Si-0 bond 
length (161.4 pm) and the 6-31G* result (Table 24) lies 
within the typical limits of &2.2 pm for this basis set 
(cf. Table 1). Other T(XH),-type models studied by 
nonempirical calculations are [Zn(OH)4]2-,458 [A1(0- 
H)4]-,452 and all the eight T(XH)4 molecules with T = 
C, Si, Ge, and Sn and X = 0 and S.'29 

In contrast to the lack of experimental data for TO4 
groups in molecules, the structure of TXT fragments 
(T = Si, Ge? Sn; X = 0, S )  in the H3TXTH3 gas-phase 
molecules has been observed. The striking similarities 
with the structures of corresponding fragments in 
~ r y s t a l s ' ~ ~ ~ ~ ~ '  support the use of hydrogen atoms for 
saturating the dangling bonds of fragments that have 
been cut out of solids. This procedure has now become 
standard in calculations on oxidic materials such as 
silica and zeolites. The reason that these naive mo- 
lecular models perform so well is that both "T/4" and 
"X/ 2" pseudoatoms, which are formed following the 
fractional atom scheme of section IV.E, are neutral for 

T = Si, Ge, and Sn and X = 0 and S. It has also been 
pointed out in section IV.E.3 that for atoms from other 
groups of the periodic table (e.g., A1 or P in A104- and 
PO4+ tetrahedra) pseudoatoms with modified effective 
nuclear charges and modified orbital exponents are 
preferable. This applies also to other coordination 
numbers, e.g., to 6-coordinated Si in Si02 (stishovite; 
section IV.E.5). 

In establishing models for calculations on solids, a lot 
of ideas have been implemented. For example, the 
following model has been suggested to simulate high 
pressure on Si02:459 To the (HO),SiOSi(OH), model 
(cf. Chart 8) two helium atoms were added and placed 
along the Si-0 bridging bonds. To increase the pres- 
sure, the helium atoms were symmetrically stepped 
toward the Si atoms, keeping the Si-Ob, distance con- 
stant. At  a particular Si-He distance the equilibrium 
positions and force constants of the Si-Ob, bond and 
the Si-Ob,-Si angle were determined from pointwise 
energy calculations. 

Very different from the molecules considered so far 
are the models suggested by S h l ~ g e r . ~ ~ ~ ~ ~ ~ ~  He starts 
from the idea that the equivalence of the Si-0 bonds 
in Si02 and other silicates is a fundamental property 
and that the natural building units of these materials 
are Si02 molecules. Correspondingly, clusters of Si02 
molecules may serve as models of bulk silica or silicates 
(Figure 14). However, Si02 molecules are known to be 
linear.462 To model tetrahedral sites appropriately it 
is necessary that the energy gained in cluster formation 
is sufficient to bend the molecules. Shluger refers to 
a second minimum he found in the 0-Si-0 bending 
potential a t  an angle of 55'. The calculations used a 
minimum basis set only (STO-6G). It is very doubtful 
that the minimum persists when passing to larger basis 
sets, and inclusion of electron correlation is inevitable 
to settle this problem definitely. With other compounds 
the situation may be more favorable. For example, a 
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(2) Knowledge of force fields of silicates465 is partic- 
ularly poor. Attempts at theoretical interpretations of 
IR and Raman spectra of silicates mostly employed 
simple diagonal force fields that neglect coupling 
(nondiagonal) terms and frequently make additional 
assumptions on bending force c o r ~ s t a n t s . ~ ~ ~ ~  Virtually 
nothing is known on differences between Si-0 and Al-0 
bonds. 

(3) The Al distribution in zeolite frameworks is a key 
feature for understanding the catalytic properties of 
zeolites. The difficulties of classical diffraction methods 
in this respect have been already mentioned, and it is 
only recently that inferences can be made from 29Si 
MAS-NMR spectroscopy.2 For frameworks with crys- 
tallographically different positions the question is 
whether there are sites of preferred A1 substitution. 

(4) Surface sites such as hydroxyls and defects are 
also not accessible by diffraction methods because of 
low concentration and lack of periodicity. Interpreta- 
tion of spectroscopic results needs support from calcu- 
lations. 

2. Local Structures 

Crucial for structure and bonding of the systems 
considered is the T-0-T link between two corner- 
sharing tetrahedra, -(-O)3T-O-T-(O-)3-. Newton and 
GibbsZg6 showed that the geometry of disilicic acid 
mimics nicely the Si-0 bond length and Si-0-Si bond 
angle variations in silicates and, moreover, that the wide 
range of Si-0-Si angles observed for silica glass and 
silicates is related to the broad and shallow shape of the 
potential curve calculated for disilicic acid as a function 
of the Si-0-Si angle, i.e., to the weak Si-0-Si bending 
potential.280~281~468 Extending these calculations to Al- 
substituted models (Chart 8a) narrower T-0-T angles 
have been found, namely 139’ for Si-0-A1 and 137’ for 
Si-OH.A1.280i496 The protonated bridge, SiOHaAl, shows 
a substantially increased barrier to linearity.280 Com- 
pared with the Si-0 bond in SiOSi, the A1-0 bond in 
SiOAl and both the Si-0 and A1-0 bonds in the pro- 
tonated SiOH-A1 linkages are significantly long- 
er: 280,282,496,497 

167 189 

H 
SI - 0. * a  A I  

157 170 

S i - 0 - A I  

1 5 8 2 1  1 7 1 5 + 2 5  1 6 8 5 + 3  1 9 4 2 5  

While the upper line gives directly the STO-3G results, 
the lower line gives recommended estimates based also 
on better calculations on smaller models6869 (cf. section 
1V.G). The difference between the recommended es- 
timates of Si-0 and A1-0 bonds in SiOAl bridges, 12.5 
f 2.5 pm, gains support from the Si-0 and A1-0 dis- 
tances resolved for zeolite Na-A (160 and 173 pm).498 

3. Force Constants 

The similarity of local force fields of the disiloxy 
groups in disilicic acid and quartz crystals emerges from 
the result of Newton et that the bulk modulus of 
&-quartz can be reproduced by force constants calcu- 
lated for this molecule. While this study used the 
STO-3G basis set, later 6-31G* calculations468 yielded 
more reliable force constants. Valuable force constant 
data for the angle deformation and nondiagonal cou- 
pling terms in Si04 tetrahedra were obtained from 6- 

a iJ 

n 

0 

b 
Figure 14. (a) Cluster of two TeOz molecules used to model the 
TeOTe bond of p a r a t e l l ~ r i t e ~ ~ ~  and (b) cluster of five SiOz 
molecules used to model the idealized &cristobalite.460p41 

dimer of Te02 molecules was used as a model of the 
Te-0-Te bond in paratellurite, which shows also “long” 
and “short” Te-0 bonds (Figure 14).463 The equilibrium 
0-Te-0 bond angle calculated for the gas-phase mol- 
ecule is between 112O and 122’ depending on the basis 
set used while the value observed for the paratellurite 
crystal is 102’. 

Another argument put forward in favor of the model 
is that the valence band edge in the electronic states 
is correctly described. Since the valence band edge is 
formed by nonbonding oxygen atoms, this, however, will 
always be true as long as the model contains any oxygen 
atoms with lone pairs only. The defect of such clusters 
of Si02 molecules as models of bulk Si02 is that only 
a small fraction of the atoms is properly coordinated 
(in the pentamer model (Figure 14) only the central 
silicon atom and four of the ten oxygen atoms). That 
means the models do not ensure proper hybridization 
on oxygen atoms and, hence, will always exhibit too 
short terminal Si-0 bonds with double-bond character. 

C. Framework 

1. Introduction 

Table 25 summarizes calculations on models of oxides 
and related minerals. In what follows we will comment 
only on silicates and zeolites. For a detailed discussion 
of other materials we refer to the pertinent re- 
v i e w ~ . ~ ~ ~ , ~ ~ ~ - ~ ~ ~ * ~ ~ ~  The degree of complexity of silicate 
models for which calculations are feasible (Chart 8) does 
not allow to distinguish directly between different 
framework structures. Such differences can be incor- 
porated into the models only indirectly, i.e. by making 
use of atomic coordinates observed for a given zeolite 
type.287928874447464 The virtue of the theoretical approach 
is that a number of problems can be addressed that can 
not be easily solved by experiments. Some of them will 
be considered in this and the following sections: 

(1) X-ray diffraction is usually unable to distinguish 
between Si and A1 atoms in aluminosilicate structures 
and theoretical information on how the local structures 
of SiOSi and SiOA1- linkages differ are highly welcome. 
Further, there is interest in the local structures of 
framework hydroxyls, =SiOH.Al=, that form the ac- 
tive sites of acidic catalysts. X-ray diffraction can not 
localize protons, and even when using neutron diffrac- 
tion very crude data are obtained unless the experi- 
ments can be made on very large single crystals, which 
is rarely the case. 
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TABLE 25. Calculations on Oxides (Including Silica and Zeolites) and Related Minerals 

Sauer 

subiect model method"/basis set aim ref 

H3SiOSiH3 
(i) Silica and Silicatesb 

6-31G**, DZ+2P 
MP2/6-31G**, 

MP2/DZ+2P 
6-31G(*). 

local structure of silica bond lengths and angles 130, 131 

(H0)3SiOSi(OH), 

(H0)3SiOSi(OH)3 

(HZSiOh 
[(HO)2SiOIn 

(H,SiO). (n = 3. 4) 

bond lengths and angles, 

bond lengths and angles, 

geometry 
geometry 

geometry 
geometry 
geometry 
geometry 

Si-0 bond length 
force field parameters for 

molecular mechanics 
NMR chemical shift, 0 

nuclear quadrupole 
coupling constants 

%Si NMR chemical shifts 

force constants 

force constants 

302,468 

296, 301, 302, 
448,469 

470 
471 

6-31d(*)+d(Ob,) 
STO-3G 

small rings in silicates test of various basis sets 
STO-3G, 6-31G(*), 

6-31G* 
3-21G 
6-31G'*) 
STO-3G 
STO-3G 

6-31G'*) 

6-31G(*) 
STO-3G 

[6,5,1/4,3,1/3,11 

472 
67 
471 
295 

473 
473 

474 

'silica-w" 
stishovite 

structure of silica 
and silicates 

nature of Si0 bond 

Si(OH),, (HO),SiOSi(OH),, 

SO4", Si(OH)(, H3SiOSiH3 
[(HO)zSiOHIz 

silicon oxides and 
fluorides 

475 

(ii) Aluminosilicates (Zeolites)c and Related Oxides 
(HO)3SiOSi(OH)3, STO-3G 

((H0)3SiOAl(OH)3-)P,d 
((HO)3A10A1(OH)3Z-)P,d 

T2 = Si, Al-; M = Lit, Na+), 

one or two T atoms are Al) 

(H0)3T'OTz(0H)gM (TI, STO-3G 

[H,TO],"-.M (M = Lit, BeZ+; STO-3G 

[Si(OSiH3)4-,(OA1H3),ln- STO-3G 
(HO)3SiOBe(OH)l-, STO-3G 

(HO).SiOH-Be(OH); 

relative stability of 
AI-0-A1 pairs 

geometry, relative energy 301 

relative energies 

relative energies 

atomic charge on Si 
bond lengths and angles 

bond lengths and angles 

434,476 

434,477 

285 
478 

282 

2gSi chemical shift 
local structure of 

SiOBe bonds 
local structure of 

TOT bands 
(HO)3yO(H)T(OH)3e (T = Si, Al, B, STO-3G 

Be, Mg), (HO)3TO[T(OH)31.X(OH)3 
(T = Si, Al; X = Li, Be, B, C, Na, Mg, 
Si, Al), (HO)3TO[T(OH)3].r(OH)5 
(T = Si. Al: X = Li. Na. Me. Al) 

X(OH),(OHzj, (n = 3; 6' X i 'Li ,  

NO,(OH), (n = 1, 3), S02(0H)2, 
(H0)02SOSO2(OH) 

6-31G(*), 6-31G* 
Na, Al, Si), MgO(OH,), (n = 3, 5), 

(iii) Defects 
[T(OH),]? [T(OH)z(OSiHJ21" STO-3G 

(T = SI (n = O), T = A1 
(n = 0, +1, -1)) 

Mt[A1(OSiH3),]" (n = -1, O), 
Mg+[O(SiHd21, O(SiHJ2 

HZSizOb, SiHz(OH)z, 
[(H0)2Si-0]z (4-ring), 
[HzSi-0]3 (6-ring) 

M+[A1(OH)4]n (n = 1, O), STO-3G 

(HO)3Si-H-Si(OH)s STO-3G 
(HO)zSi=O, planar %(OH)(, 6-31G(*) 

H2Si0, (HO)HSiO, (HO),SiH 3-21'2, DZP 

bond length-bond 
strength relaxation 
in oxides 

bond lengths 479 

AlO, centers in a-quartz local structure, spin density, 480, 482 
hyperfine tensor 

local structure, spin density, 481, 482 
hyperfine tensor 

local structure, spin density 483 
local structure, stability 67 

[A104/M+] centers in 
a-quartz (M+ = Ht, 
Li+, Na+) 

El' center of a-quartz 
defects in amorphous 

silica (Si=O double 
bond, four-membered 
rings) 

defects and surface 
sites of silica 

electronic structure of 
silica and origin of 

local structure, vibrational 

energy levels 
frequencies 

484 

485 SO4, SiOSi + point charges (bulk), EC-MB 
'Si(0Si)Z + point charges, 
O-Si(OSi), + point charges surface states (E.' center. -~ 

Si=O double bond) ' 

nonclosed SiOSi links (HqSiOH), 3-21G local structure, 
deprotonation energy 

486 
in high-silica zeolites 
precursor of NBOHCh 
defects in SiOz 

V, center in Daratellurite molecules TeOn. Te.Ol! bulk SCF/STO-SG + 
d(Te) + dif. s 
(vacancy) 

charges, geometry of the 
defect site, EPR 
parameters 

463 
( H0)3TeOT;iOHj3,'defect 
site [(H0)3Te Te(OH)31'+ 

(iv) Phosphates and Aluminum Phosphates 
STO-3G, STO-3G'*' 
STO-3G, STO-3G(*', 

H3PO4 
(HO)zOPOPO(OH)z 

STO-3G, STO-3G(*), 
6-31G'*', 6-31G*+d(Obr) 

(H0)3POP(OH)l+ 6-31G(*) 
P(OH)I+, H3PO4, HzP04-, PO,'- 6-31G'*' 
PO3-, HP03, P(OH)5 6-3 1 G(*) 
P(OH)dt, (HO),POAl(CH), STO-3G 

452 
302 

geometry 
geometry 

302 
302 
302 
289 

geometry 
geometry 
geometry 
geometry, charge 

distribution 
nabure of =P+OAl= 

bonds 
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TABLE 25 (Continued) 
subject model method"/basis set aim ref 

triangle8 and tetrahedra, 
dimer 

dimers 

cyclic trimers 
monomers and dimers 

cyclic trimers 
dimer 

monomers and dimers 
monomer 
dimer, cyclic trimer 
tetraborate anion 
monomers and dimers 

thiosilicates 

germanates, stannates, 
and their thioanalogues 

silicon nitrides 

(v) Borates 
B(OH)S, B(OH)d-, B(OH)B*HpO 6-31G* 
(HO)zBOB(OH)z STO-3G, 4-31G, 

6-31G. 6-31G* 

STO-3G, 4-31G 
DZ 

Si(SH)(, (HsW2S STO-3G 
[(HS)&ISiLS 
(HZSiY)z (Y = 0, S) 3-21G, 6-31G* 
T(YH)I, HsTYTH, (T = C, Si, 6-31G** (T = C, Si), 

Ge. Sn: Y = 0. S) 3-21G'*' (T = Ge. Sn) 

MP2/6-31Ga 
H3Si-NHz SCF/TZ+2P 
H3Si-NHz, Si(NHZ),, N(SiH&, STO-3G, 6-31G(*), 

NH(SiHS)z, [(HzN)sS~IZNH 6-31G 
[(HzN)zHS~IZNH STO-3G 

geometry, deformation 
electron density 

geometry 

geometry, BOB bond angle 

geometry 
electron density differences 
electron density differences, 

B-0 stretch vibrational 
frequencies 

geometry 
electric field gradient tensor 

geometry 

geometry 

electron density 
geometry, force constants 

geometry, nitrogen 
inversion barrier 

geometry 

geometry 

487 

481 

488 

488 
488 
489 

490 
491 

338 

492 

472 
129 

493 

494 

492 

'If not otherwise noted, SCF method is used. *For calculations on the Si(OH)4 model of Si04 tetrahedra employing various basis sets, see Table 
24. CSee also Tables 26 and 28. d l  Ip denotes embedding by a point ion array. eThe proton (H) may be or may be not present. This as well as the 
particular choice of T determines the residual charge. f m  is chosen such that the models are neutral. 8Cf. Figure 14a. hNonbridging oxygen hole 
center.'e6 CI-SD calculations were also performed. 

't "' i-..------j 
600 

400 
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I ,  I 
I , ,  , , I I , I , I , ,  / I 1 8  8 1  

160 170 160 190 200 
r(TO1lpm - 

Figure 15. Harmonic Stretching force constants of T-0 bonds 
in aluminosilicates derived from ab initio calculations on (H- 
0)3SiOSi(OH)3,'BB Si(OH)4,417 H,SiOH and H3SiOH.AM3,499 and 
IHnSi0-AlHR1-.500 Full and oDen symbols refer to S i 4  and Al-0 
b i d s ,  respiitively, while circles &d triangles refer to 3-21G and 
6-31G* basis seta, respectively. The line indicates the particular 
Badger-Bauer relation, which proved successful in describing 
observed zeolite lattice  vibration^.^^^^ The crosses refer to two 
different experimental force fields for SiOz (see ref 417 for the 
original references). 

31G* calculations on orthosilicic acid.417 Figure 15 
shows the Si-0 bond stretching force constants from 
these s t ~ d i e s ~ ~ ~ i ~ ~  together with 6-31G* and 3-21G re- 
sults for the Si-0 and A1-0 bonds in the H3SiOH, 
H3SiOH.A1H3,499 and H3SiOA1H3- models.500 Compar- 
ison is made with a simple empirical force field fitting 
observed vibrational frequencies of zeolite frame- 
w o r k ~ . ~ ~ ~ * ~ ~  It is based on the assumption that differ- 
ences between Si-0 and A1-0 bonds as well as differ- 

ences between bonds of one type, but with different 
lengths, can be reduced to the Badger Bauer relation 
between bond lengths ( r )  and force  constant^:^^^*^^^ 

fii(r) = A i / ( r  - bJ3 (VII. 1) 

I.e., there is only one set of constants A and b for both 
Si-0 and A1-0 bonds. 

The figure shows that the calculated force constants 
are larger than the values that fit the experiment. The 
common experience is that 6-31G* and 3-21G basis sets 
yield force constants that are too large by about 25% 
(cf. Table 1). Nevertheless, the calculated force con- 
stants also follow the Badger Bauer relation. It is a 
significant result that differences between Si-0 and 
A1-0 bond stretching force constants can be reduced 
to bond length differences since the justification of this 
assumption was very uncertain. Typical lengths of S i 4  
and A1-0 bonds in zeolites, 160 and 173 pm, respec- 
t i ~ e l y , 4 ~ ~  correspond to stretching force constants of 532 
and 310 N m-l, respectively. 

The influence of variations in framework composition 
(measured by Sanderson's average electronegativity) on 
Si-0 and A1-0 bond stretching frequencies has been 
studied by Datka et al.501 Gibbs et al. calculated the 
stretching force constants of the TX bonds in T(XH), 
molecules (T = C, Si, Ge, Sn; X = 0, S) and showed 
that their distance dependence follows the relation129 

with n = 2.45. Force constants of framework and sur- 
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TABLE 26. Model Calculations of Relative Stabilities of Al-O-A1 and Al-O-Si-O-A1 Pairs in Aluminosilicate and Zeolites 
model equilibria considereda cation (X+)* AE,  kJ/mol 

(a) 2[A1, Si1-X' * [Al, A1]*-Xt + [Si, Si]X+ non 
non 380-455& 
PC 460301 
Li+ 440476 

490,=l 485476 

(b) 2[A1, Si]-Xt [Al, A1I2-X2+ + [Si, Si] six distributed 120301 
Pc ('/6+, ' / 6 + )  
PC ( l+ ,  2 + )  -33O3O1 

Ring-Type Models 
(c) [Al, Si, Al, Si]2-X"t + [Al, Al, Si, Si]"X2+ non 

Li+ 
Be2+ 
2 H+ 
non 
non 

[Al, Si, Al, Si, Si, Si]2- + [Al, Al, Si, Si, Si, Si]2- 
(d) [Al, Si, Si, Al, Si, SiI2- F= [Al, Si, Al, Si, Si, SiI2- 

135,477 120U 

60477 
50U 

17OZE7 
15-5OZE7 

a Only the central T atoms of TO4 tetrahedra are specified in square brackets; i.e. [T, TI denotes the (HO)BTOT(OH)B model. *pc = point 
charge. 

face hydroxyl groups68*499~501-503 are mentioned in section 
VI1.D. 
4. Si-AI Ordering and Siting 

It is commonly accepted that Loewenstein's rule 
controls the distribution of A1 in aluminosilicate 
frameworks. This rule excludes the existence of Al-0- 
A1 pairs. Table 26 shows model equilibria considered 
in theoretical studies of the limits of validity of this rule. 
For type (a) models (pairs of linked tetrahedra) the 
Ala-A1 pairs are highly unstable. In larger models (c), 
four- or six-membered rings, the instability of these 
pairs is largely reduced, in particular when the models 
are made more realistic by adding charge-compensating 
metal cations or protons. The essential feature of type 
(b) equilibria is that only neutral models are involved. 
The results indicate that A1-O-A1 pairs may occur 
provided that they are stabilized by strong local electric 
fields created by nearby cations. The general conclusion 
is that cation effects should not be ignored. The results 
for type (d) equilibria show that A1-O-Si-O-A1 pairs 
are destabilized by 15-50 kJ/mol. Dempsey's rule 
states that also such pairs are avoided whenever the 
Si/A1 ratio allows this. In conclusion, both Loewen- 
stein's and Dempsey's rules, which were based on sim- 
ple electrostatic arguments, can be rationalized by 
quantum chemical results. 

The problem of A1 siting in frameworks with crys- 
tallographically distinguishable positions has been 
theoretically studied by Andre, Fripiat, and Derouane 
et a1.287*288,444,464 in a number of papers. Knowledge of 
the preferred sites for A1 substitution (if there are any) 
would allow one to make suggestions for the location 
of the active framework hydroxyls within the channel 
system of a catalyst. The basic idea was that the local 
structures of the different sites will be differently suited 
to accommodate an A1 atom. From what has been said 
in section VII.C.2, it emerges that the best suited sites 
would be those with the longest T-0 bonds and 
smallest T-0-T angles. A way to check whether a given 
local structure is optimal for accommodating A1 is to 
perform quantum chemical calculations of an Al(OHI4- 
model adopting the observed atomic coordinates. The 
difference of the obtained energy and the energy of the 
corresponding Si(OH)4 model at the same geometry 
yields the substitution energy. 

For selected positions, calculations have been com- 
pleted (STO-3G basis set) on much larger models: 

pentameric Al[OSi(OH),], models (Chart 8e), pentam- 
eric chains in ZSM-5 (cf. Chart 8e), and four- and six- 
membered rings (Chart 8f) in mordenite and ferrierite, 
respectively. The authors reached the conclu- 
sion287v288*444** that the preferred sites of A1 substitution 
are located in the six-membered rings (T2) of the fer- 
rierite framework, the four-membered rings (T3 and 
T4) of the mordenite framework, and the five-mem- 
bered ring (T12 and T2) of the ZSM-5 framework. 

There are some problems that may affect the relia- 
bility of the results: 

(1) The atomic coordinates are not always accurately 
enough known to render calculated energy differences 
significant. For example, the ZSM-5 structure data430 
for which the  calculation^^^^.^^^ were performed show 
variations of the average T-0 bond length for the in- 
dividual tetrahedra between 163 (T12) and 156 pm 
(T8). In contrast, a more refined structure (single- 
crystal data) yields average T-0 distances for the 12 
different tetrahedra that vary between 160 (T10) and 
157.5 (T8) only.504 (The standard deviation is 2 pm.) 

(2) Cations may affect the relative substitution en- 
ergies significantly.288 For example, the energy changes 
observed on protonation of models are of the same 
magnitude as the differences between the sites and may 
change the order of relative substitution energies. 

(3) Zeolites are metastable systems, and their A1 
distribution may also depend on kinetic aspects. 
Nevertheless, it would be certainly a significant progess 
if we knew the energetically most favorable Al siting for 
a given framework, and the quoted s t ~ d i e s ~ ~ ~ * ~ ~ ~ , ~ ~ ~ , ~ ~ ~  
made an important step toward the proper solution. It 
seems that we will not get a definitive answer unless we 
include the effect of cations (protons), optimize the local 
geometry, and allow for relaxation of the surrounding 
lattice. This is a task by far too demanding for a direct 
ab initio calculation, and this the more as minimal or 
other small basis sets will not be sufficient for this 
purpose. Semiempirical methods438*439 or electrostatic 
lattice energy calculations yield also too crude resultsw 
and hope focuses on ab initio derived potential func- 
tions, either within an ionic mode1505 or within a cova- 
lent force field 

D. Framework and Surface Hydroxyls (Acidic 
Sites) 

The outer surfaces of microcrystallites of three-di- 
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TABLE 27. Molecules as  Models of Surface Hydroxyls: Comparison of 0 - H  Stretching Frequencies (cm-’) Observed on 
Surfaces with Gas-Phase Data for Molecules 

calculation$ molecules type of 
silanol group surface gas solution (molecular models) 

single (ESiOH) 374Pb 3700 [Me2(Me3SiO)Si0]3Si0Hc 3840’ (4025) (HO)3SiOHf 
3705 [Me3Si0I3SiOHe 
3698 (MeO),Si-OH‘ 
3695 Me&-OHc 

3740 Me3SiOHd 3688 Me3Si-OHe 3811’ (3995) H,SiOHg 
geminal 3742b 3686 MezSi(OH)2e ref 543 
vicinal 3720’ 3700 Et3Si-OH’ 37783’ (3960) 

bridged 3665 3750’ (3931) H3SiOH.AlH3 
3550n 3500 (Et3SiOH),’ 3598’ (3771) (H3Si0H)2h 

Reference 508. References 509 and 510. ‘0.01 m solution in CCle611*512 Reference 513. e Diluted CCl, sol~tion!~~*~~‘ ’Reference 417. 
Reference 486. 0.033 m solution in cycl0hexane.5~~ ’Scaled SCF/3-21G frequencies (calculated harmonic fre- 8 References 68 and 499. 

quencies in parentheses). Scale factors derived from calculated and observed frequencies for H20 and CH30H.@ 

mensional zeolite or silica networks are terminated by 
surface hydroxyls called “terminal” hydroxyls (XIa). 

Q b C 

XI 

1-H‘ 

H 
I 

XI 

When protons are attached to SiOAl bridges of alu- 
minosilicate frameworks, to compensate their negative 
charge, “framework” or “bridged” hydroxyls (XIb) are 
created that are the origin of Bronsted acidity of 
zeolites.68 In contrast, terminal hydroxyls are only 
weakly acidic. Besides “isolated” terminal hydroxyls, 
geminal (XIc) or adjacent pairs (XId) of hydroxyls may 
occur on silica  surface^.^^!^^^ Recently, it  has been 
suggested that adjacent hydroxyl pairs may be present 
as defects (unclosed SiOSi links) in high-silica zeolites 
(ZSM-5).* Such unclosed SiOSi links are also believed 
to form the precursors of so-called “nonbridging oxygen 
hole centers” (XIe) in Si02.495 

A common means for identification of surface hy- 
droxyls is IR spectroscopy of the OH vibration.507 
Comparison of observed frequencies (Table 27) dem- 
onstrates that molecules in the gas phase or in solution 
can successfully model different types of hydroxyls on 
solids. Results of calculations are also given. 

Figure 8 in section 1V.G shows predictions for the 
local geometry of protons in framework hydroxyls, 

=SiOH.Al=, and terminal hydroxyls on the outer 
surface of crystals, E S ~ O H . ~ ~  (Results for hydroxyls 
in solid sodium hydroxide259 have been mentioned in 
section V.B). The OH vibrational properties were first 
studied on the basis of 3-21G calculations.68 Calcula- 
tions on H3SiOH.AlH3 models in which the H atoms on 
Si and/or A1 were gradually replaced by F confirmed 
that the OH vibrational frequency varies linearly with 
Sanderson’s average electr~negat ivi ty .~~~ Thus, the ab 
initio calculations on molecular models give theoretical 
support for correlations of various IR spectroscopic 
parameters and the acid strength of hydroxyl groups 
with a parameter describing the composition of the 
catalyst. However, STO-3G calculations on H3SiOH. 
AlH3 models516 produced evidence that structural fac- 
tors, i.e., the differences of T-O bond lengths and SiOH 
bond angles between the individual sites of zeolite 
frameworks may also account for observed shifts of OH 
frequenci,es. It turned out that the OH bond properties 
are much more sensitive to changes in composition 
when the hydroxyl group interacts with an electron 
donor, H20. Frequency shifts on interaction of hy- 
droxyls with electron donors (CO, NH3, H20) for the 
bridging groups are found at  least double those of the 
terminal ones, which agrees with experimental IR 
spectral data.517 Comparing different groups, these 
shifts follow more closely the acidity strength than the 
OH frequencies of the unperturbed groups. To estimate 
the effect of isomorphous substitution on surface hy- 
droxyls, the above-mentioned studies on the H3SiO- 
H-A1H3 mode1687517 were extended by calculations of 
local geometries, OH vibrational frequencies as well as 
their shifts on formation of complexes with CO and 
NH3 for the H3T(1)OHT(2)H3 models with T(l) = Si, T(2) 
= B, Al, Ga and T(’) = Ge, T(2) = Al.518 The charac- 
teristics of the Bronsted sites were predicted to vary in 
the order ZSiOH < =SiOH.B= < =SiOH-Ga= S 
=GeOH.Al= S =SiOH-Al== in agreement with ex- 
perimental observations. 

Recent calculations on the complete force field of 
=SiOH-Al= revealed that the SiOH defor- 
mation frequency undergoes much larger shifts between 
different types of hydroxyls and confirmed an earlier 
s u g g e s t i ~ n ~ ~ ~ , ~ ~ ~  to look a t  this mode when trying to 
identify surface hydroxyls. Model calculations also 
showed516 that the SiOH deformation is more sensitive 
to changes of the local structure of SiOH-A1 sites than 
the OH vibration. 

Unfortunately, this band is hidden by framework 
vibrations and can only be uniquely identified as a 
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TABLE 28. Models of B r ~ n s t e d  Sites on Oxidic Catalysts (Including Zeolites): Deprotonation Energies, AEDP (kJ/mol), Net 
Charge on the Acidic Proton, q H  (au), and Estimateda Gas-Phase Acidities, AHDPo(0) (kJ/mol), from SCF/STO-3G 
Calculations 

model eeometrv. site 
H,0Si(OH)3 
(H0)3SiOH,.Al(OH)3 
(H0)3SiOH,.[Al(OH)3], 
H,OSi[OSi(OH),](OH), 
(H0)3SiOH,Al(OH)3 
Ha0 [Al(O-),!, 
HOH,.Al[OSi(OH)~] (OH), 
(HO)zAlOH,.[Al(OH),Iz 
(HO)3SiOH,A1(OH)3 

[Si, Si, Si, All-HJ 
[Si, Si, Si, All-HJ 
[Si, Al, Si, A1]-Ha1H,2f 

(HO)3SiOH,.Al( OH), 
(H0)3SiOH,.Al(OH)3 
(H0)3SiOH,.A1(OH)3 
(H0)3SiOH,-B(OH)3 

optimized 
optimized 
optimized 
standard (quartz) 
standard (quartz) 
standard (alumina) 
standard (quartz) 
standard (alumina) 
ZSM5,b Si10H,A14 
ZSM5,b SisOH,AIZ 
ZSM5,b Si120H,A112 
ZSM5.b Si120H.A112 

..., Si30H:Alzen 
MOR, Si40H,A14 
MOR, Si30H,A13 
MOR, Si30H,'A13 
..., Si40H,2A14 
standard 
standard 
partially optimized 
partially optimized 

aEDP 

2090 
1740 
1510 f 30 
2190 
1690 
2036 
1740 
1563 
1761 
1610 
1556 
1571 
1553 
1576 
1516 
191T 
1585 
1593 
1620 
1896 
1690 
1640 
1680 
1680 

qH f i D P o ( o ) "  ref 
0.106 1470 496 
0.26 1225 496 

1065 f 50 496 
0.18 1540 521 
0.29 1190 521 
0.32 1435 522 
0.30 1225 521 
0.25 1100 522 
0.25 1240 464 
0.26 1135 464 
0.30 1100 464 
0.29 1105 288 

1095 288 
1110 288 
1070 288 
1350 288 
1115 444 
1120 444 
1140 444 
1335 444 

0.29 1190 523 
1155 524 
1185 282 
1185 282 

' a H ~ p ~ ( 0 )  = fAE,p(STO-3G), f = 0.704 f 0.015 (see text). bAtomic coordinates observed for the specified crystallographic positions have 
been used. 'Cf. Chart 8e. dPentameric chain of five TO4 tetrahedra; cf. Figure l l c .  eSecond deprotonation step (bifunctional acid). 
f Four-membered ring model of mordenite. 

combination band with the O-H stretch in the near-IR 
region (diffuse reflectance t e c h n i q ~ e ) . ~ ~ ~ ~ ~ ~ *  Interpre- 
tation of the spectra requires knowledge of anharmon- 
icity constants of the vibrations that have been provided 
by ab initio calculations.503 

A direct measure of the intrinsic acidity strength of 
an individual surface site is the heat of deprotonation 
at  0 K, AHDp0(0):68p496 

m D P 0 ( O )  = A E D P  + mzp (VII.3) 

This is a straightforward extension of definitions in- 
troduced for gas-phase molecules. Since anions are 
formed on deprotonation, accurate calculations of the 
deprotonation energy, AEDp, require extended basis sets 
(diffuse functions) and inclusion of electron correlation. 
Nevertheless, one may still get correct relative values 
of deprotonation energies from small basis set SCF 
calculations-the only ones that can be completed for 
reasonably large models of surface sites. Since the 
change of the zero-point vibrational energy, AEzp, is a 
minor correction frequently assumed to vary linearly 
with AEDP, an estimate of aHDpO(0) may be obtained 
from calculations employing even minimal STO-3G 
basis sets: 

A H D P O ( O ) ~ * ~  z= ~AED~(SCF/STO-~G)  (VII.4) 

The scale factor f is derived from calculations on H 2 0  
and CH30H since for these molecules AfI~p"(0) is 
known from experiments. Table 28 shows results for 
models of different hydroxyl sites on zeolites and re- 
lated catalysts. The following inferences can be made: 

(1) Bridged hydroxyls are significantly more acidic 
than terminal hydroxyls. Generally, the acidity strength 
is higher the larger the coordination number of the 
hydroxyl oxygen atom and the lower the coordination 
numbers of the neighbored cations are.521i522$525 This is 
clearly seen from the calculations for different hydroxyls 

on alumina (coordinated by one, two, or three alumi- 
num atoms in a trigonal, tetrahedral, or octahedral 
e n ~ i r o n m e n t ) . ~ ~ ~ , ~ ~ ~  

(2) Changes of local geometry as observed between 
different frameworks and betweon different sites of a 
given framework may cause major acidity changes (see 
also ref 524 and 526). 

(3) The acidity strength of the second proton in 
paired =SiOH.Al= sites is lower than that of the first 
proton.288 This is expected since multiple E S i O H - A k  
sites interacting through the framework correspond to 
polyfunctional acids. 

(4) The acidity strength of =SiOH,.B= sites that 
may be present in B-modified zeolites is not higher than 
that of =SiOH,.Ak sites (cf. ref 518). 

Bronsted acidity and Lewis acidity as well as basicity 
have been discussed as complementary principles for 
composite metal oxides (silica-alumina, silica-magne- 
sia),521 magnesium and different types of alu- 

Other calculations of deprotonation energies68,486v529 
used the 3-21G basis set (cf. section 11). Except the 
simple H3SiOH, H3SiOH.A1H3, and (H3SiOH)2 models 
of sites XIa, b, and d6874ss {03SiOH.A1036]P models em- 
bedded in an array of 82 point ions (charges of 2+ and 
1- on Si and 0, respectively) were studied.529 The 
calculations used the observed atomic coordinates of 
ZSM-5.430 The deprotonation energies of about 2650 
kJ/mol reported529 are much larger than the 1430 
kJ/mol obtained, e.g., for the H3SiOH.AlH3 model.@ A 
possible explanation is that the model adopted in ref 
529 is not neutral as the point charge array is termi- 
nated by oxygen ions. 

Theoretical studies of the acidity strength of complex 
catalysts as, e.g., supported transition-metal 
require calculations on models such as XI1 that are very 
large for a decent quantum chemical ab initio treat- 
ment. Calculations of the deprotonation energies of 

mina.522,525,528 
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models XIIa-c were completed530 within the local den- 
sity approximation in combination with effective-core 
potentials (cf. section ILD). They successfully explained 
the experimentally observed acitivity trends for sup- 
ported catalysts, namely TiO, << NbO, < WO,. In 
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However the STO-3G basis set has its weakest per- 
formance just with intermolecular interactions (un- 
healty large BSSE; cf. section V.C). It has been shown 
many times322 that other small basis sets like 4-31G or 
MINI-1 (see, e.g., ref 57 and 373) are better suited for 
studying intermolecular interactions provided that 
corrections are made (i) for the basis set superposition 
error (BSSE), (ii) for the overestimated dipole moments 
with the 4-31G basis set, and (iii) for neglected inter- 
molecular correlation contributions. The latter can be 
achieved by adding a semiempirical estimate of the 
dispersion energy to the corrected SCF result. These 
prescriptions were followed in the investigation of the 
binding of water molecules on different surface sites of 
silica, zeolites, and aluminosilicates by Sauer et  

The sites considered include Na+ ions attached to 
zeolite A  framework^,^^*^^^^@ isolated263*"2*543 (XIa) and 
geminal (XIC)"~ terminal hydroxyls, bridged hydroxyls 
(XIb),544 SiOSi bridges (XIf),263>443v542 Lewis sites (3- 
fold-coordinated A1 modeled by Al(OH),) ,544 and A13+ 
~ a t i o n s . ~ ~ ~ ~ ~ ~ ~  

The bonding of HzO, NH3, and CO on terminal (XIa) 
and bridged hydroxyls (XIc) was also compared on 
calculations using the 3-21G basis set.517 Note that 
much too large binding energies are obtained with this 
basis setw because of a large BSSE and overestimated 
electrostatic interactions. Calculations on complexes 
of one and two H 2 0  molecules with silanol, H3SiOH, 
were performed using the 6-31G(*) basis set.546 

Entropy changes accompanying the formation of 
surface complexes should not be neglected when com- 
paring the bonding ability of different types of 
sites.433~542~543 Specifically, the hydrophobicity of de- 
hydroxylated silica surfaces and high-silica zeolites is 
caused by the fact that the heat of adsorption released 
is not sufficient to compensate the loss of entropy when 
HzO binds on SiOSi surface sites.433@2 In contrast, the 
energy of binding of HzO on bridged hydroxyls, XIb, 
is a multiple of that on siloxan bridges, SiOSi.544 This 
finding supports the view that in silicium-rich zeolites 
bridging hydroxyls act as hydrophylic sites within an 
environment of hydrophobic siloxan bridges. 

On surfaces, molecules "feel" the potential of large 
parts of the solid and they can interact with more than 
one site. This is particularly true for the micropores 
of zeolites that have "molecular" dimensions. For ex- 
ample, H20 is found to bond with its two hydrogen 
atoms to two SiOSi  linkage^.^^^^^^^ There is definitely 
no way to peform directly nonempirical calculations on 
models that include many surface sites and reflect their 
arrangement on realistically shaped surfaces. There- 
fore, the suggestions of Clementi,647 Beveridge,5L8*549 and 
others for molecules in aqueous solution and bio- 
polymers were adopted and an analytical transferable 
site-site potential (QPEN,548*549 quantum mechanical 
potential based on electrons and nuclei) was derived for 
water-silica interactions from ab initio calculations on 
small models.263*543 

The same aim is pursued by Vigne-Maeder,550 but a 
different approach is employed based on the theory of 
Claverie&l for intermolecular interactions between large 
molecules. Potentials have been calculated for the ad- 
sorption of H20, CH,, and CH30H inside the ZSM-5 
channels. Present Monte Carlo552-554 or molecular dy- 
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addition to the studies already mentioned, Akarenkov 
et a1.= investigated the formation of surface hydroxyls 
on adsorption of H 2 0  on the MgO(100) surface. 
Bauschlicher considered Ni50H, CuOH, and AgOH as 
models af hydroxyls on metal surfaces531 that may form 
on dissociation of H 2 0  on metals in the presence of 
preadsorbed K or 0 atoms. 

E. Surface Complexes 

The interaction of molecules with surfaces of silica, 
aluminosilicates, or zeolites can be understood in terms 
of intermolecular interactions of these molecules with 
surface groups such as hydroxyls, SiOT bridges (T = 
Si, Al-), or cations.433~443i532 Gas-phase cation-molecule 
complexes provide the first information on the binding 
of molecules on the respective cations in  zeolite^.^^^^^^^ 
Of particular interest are hydrocarbons as they are in- 
volved in catalytic transformations. Among the mole- 
cules studied are benzene, isobutene, and eth- 
ene.58~373~533~534 The calculated IR frequency shifts 
(MINI-1 basis set) for the Na+-C2H4 complex compared 
with free CzH4 explains the IR band shifts observed on 
adsorption of C2H4 in Na-X as well as in Ca-X and 
Ca-Y zeolites.58 

This example shows that methods suited to study 
intermolecular c ~ m p l e x e s , ~ ~ ~ ~ ~ ~ ~  e.g., ion-molecule or 
hydrogen-bonded complexes, can be readily applied to 
surface complexes provided that appropriate molecular 
models of the surface sites can be Molec- 
ular electrostatic potentials (MEP) not only provide 
qualitative information on the bonding ability of dif- 
ferent surface sites of s i l i ~ a ~ ~ ~ l ~ ~ ~  but also are the data 
from which meaningful point charges can be derived263 
(cf. section 1V.D). The desire to study large (and 
hopefully more realistic) models has tempted some re- 
searchers to employ the minimal STO-3G basis set. 
Examples are surface complexes of Hz0,5371538 NH 3, 538 
Nz, and 0 2 5 3 9  on Lewis acidic sites in aluminosilicates 
(AUOH), models) and hydrogen-bonded complexes of 
NH3540 and H205,1 with and bridged541 
hydroxyl groups. 
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namics555-557 simulations on zeolitic water554-557 and 
gases adsorbed in ~ e o l i t e s ~ ~ ~ ~ ~  to obtain  structure^:^*^ 
vibrational ~ p e ~ t r a , ~ ~ ~ - ~ ~ ~  e n e r g i e ~ , ~ ~ ~ - ~ ~ ~  and thermo- 
dynamic exclusively employ empirical 
potentials. Ab initio derived potentials could elevate 
them onto a nonempirical level. 

All the studies mentioned so far presume that under 
common chemical conditions ideally ionic surfaces do 
not exist. Such surfaces would be (hypothetically) 
formed when cleaving, e.g., a quartz crystal by hetero- 
lytic fission of all affected Si0 bonds: 

ESi-O-Sic -+ Si+ + -()Si 

They would either reconstruct and form additional 
strained SiOSi linkages (Le., Si04 tetrahedra will be 
linked by common edges) or, in the presence of traces 
of water, would immediately cover with hydroxyls. 
Hence, the assumption of a pure ideally ionic (1010) 
surface of quartz made by Julg et al.361 seems to be not 
very realistic, at least not for the situation they are going 
to model, namely the chiral discrimination between an 
alanine molecule and a quartz surface during the for- 
mation of peptides.558 

Different from the progress made in theoretically 
modeling adsorption phenomena, the theoretical 
treatment of chemical reactions on active surface sites 
is still premature. The few studies published are limited 
to analyzing charge distributions of possible reactant, 
intermediate, or product states obtained by very simple 
ab initio methods. Charge distributions and valence 
electron levels (STO-3G basis set) were considered for 
sites formed on dehydroxylation of  aluminosilicate^^^^ 
and for ethoxyl groups bonded to zeolite frameworks.537 

To explore the initial step of the photooxidation of 
propane over vanadium oxide catalysts supported by 
silica, calculations have been made for separate and 
coadsorption of ethene and oxygen on (HO)3V0 mod- 
e l ~ . ~ ~ ~  Different modes of approach were considered, 

Sauer 

0 
It 

\ H H 
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Xlll 
but restrictions were imposed on geometry parameters 
and assumptions made for the structure of the (HO)3V0 
model. The calculations used the 3-21G basis set for 
C, 0, and H and a [5s3p2d] basis set for V. The V U S i  
linkages between the vanadium oxide and its support 
were replaced by the terminating hydrogen atoms. The 
differences between the singlet and triplet states of the 
active site and the mechanism of coadsorption (syner- 
getic effect) is discussed. 

F. Metal-Support Interactions 

A few nonempirical studies are devoted to this key 
problem of catalysis.429 The conclusions they reach 
largely depend on the model adopted for the support 

surface. For the Cu-MgO catalyst (converts CO to 
methanol) it has been confirmed by ab initio calcula- 
tionsm that Cu can stably stay in a Mg vacancy on the 
surface of MgO. A Cu atom donates two electrons to 
the cluster and a Cu+ ion donates one electron, both 
yielding a Cu2+ ion. Table 16 quotes calculations on the 
MgO (111) surface351 showing that these types of oxide 
surfaces, which consist of oxygen ions only, are stabi- 
lized by a reduced net charge on the surface oxygens. 
They can be represented as 0- instead of 02- in MgO. 
Similarly, when an A1203 (corundum) surface model is 
adopted that contains in the surface layer only oxygen 
atoms, the charge distribution found in calculations is 
O-.561 When a nickel atom is added to such surface 
model, about 1.5 electrons are transferred to the surface 
atoms; i.e., nickel oxide is formed, and nickel is present 
as nickel ion.562 This finding seems to be in contra- 
diction with the experimental results indicating that the 
catalytic action of nickel on alumina is the same as that 
of Ni by itself.562 In the previous paragraph it has been 
pointed out that under the conditions of common cat- 
alyst preparation oxide surfaces either are covered by 
surface hydroxyls or reconstruct and form additional 
oxygen bridges. Typical sites of such stabilized Surfaces 
of silica or aluminosilicates, or of the ideal “internal” 
zeolite surfaces, are SiOSi and SiOA1- oxygen bridges 
and SiOH and AlOH surface hydroxyls. Sauer et 
addressed the problem of the nature of the interaction 
of transition-metal atoms with such sites. The binding 
state of oxygen in these sites is the same as in the water 
molecule and, therefore, transition-metal atom-water 
complexes may serve as the most primitive model to 
understand the basic mechanism of interaction. These 
complexes appear to be weak van der Waals ad- 
d u c t ~ , ~ ~ , ~ ~ , ~ ~ ~  and extension of the study to the larger 
H3SiOA1H3 model does not change this findingaM3 The 
weakness of the interaction explains that metal atoms 
nearly freely move in zeolites until they are trapped by 
a site of stronger interaction (e.g., a cation, a defect, or 
another metal atom).565 Moreover, no pronounced 
electronic effects occur, and, hence, the catalytic prop- 
erties of metal species within zeolite cavities should be 
understandable by considering the electronic properties 
of these species alone. 

VZZZ. Prospects 

Substantial progress is being made with applications 
of quantum chemical methods in various fields. This 
is not primarily due to new ideas emerging or new 
methods but rather to the revolution in scientific com- 
putation we witness presently. (1) Supercomputers 
become accessible to a substantial proportion of the 
scientific community and become more and more pow- 
erful. (2) There is a proliferation of super-microcom- 
puters and work stations, bringing the power of previous 
main-frame computers into the laboratories. This de- 
velopment has lead to a mass production of results 
based on ideas and obtained by computational proce- 
dures produced in the past but not fully exploited due 
to computational limitations. Some special problems 
connected with applications of quantum chemical 
methods to solids and ways to solve them have been 
reviewed here. Supercomputers will allow us to com- 
plete crystal orbital calculations (section 111) for solids 
with larger and larger unit cells165J66 and molecular 
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calculations on larger and larger models.378y379 On the 
other hand, the dedicated computers in the laboratories 
of solid-state and surface chemists, in research institutes 
of catalysis or mineralogy, and in semiconductor physics 
departments will produce results for a vast variety of 
molecular models employing the whole spectrum of 
quantum chemical methods. The examples of appli- 
cations presented in sections V-VI1 give only an idea 
of future possibilities. However, it is also clear that 
direct applications of ab initio methods either by crystal 
orbital techniques or by using molecular models will 
face limits that exclude important questions from the 
investigation. To mention only one example, the unit 
cell of ZSM-5 zeolite contains 96 Si04 tetrahedra and 
even the asymmetric unit includes 12 Si and 26 0 at- 

This means that approximations are unavoid- 
able when trying to evaluate the relative stabilities of 
such complex structures. There are two possible ways 
to introduce approximations, which may be named the 
“Hamiltonian” versus the “potential” approach. In the 
former, one introduces approximations into the Ham- 
iltonian in the way of semiempirical methods until it 
is simple enough that the Hartree-Fock equations can 
be solved for such complex systems. One inevitably 
ends up with a semiempirical method with all its virtues 
and all the known problems. In particular, this type 
of method will not be able to make reliable predictions 
of structures, relative energies, potential surfaces, and 
vibrational properties. In the latter approach one 
makes the approximation directly on the potential 
governing the equilibrium positions and the motion of 
the nuclei within the Born-Oppenheimer approxima- 
tion. There are different types of potentials: (1) force 
field type potentials, which proved suitable in molecular 
mechanics calculations; (2) Born-Mayer-type potentials 
or other potentials, which are used to calculate the 
lattice properties of ionic crystals; (3) intermolecular 
potential functions, which are applied to gas-phase 
complexes, liquids, and molecular crystals. The point 
is that the parameters of the potentials are derived from 
ab initio calculations on small systems and may be 
transferred to large systems. The main problem is to 
find potentials that are transferable to a large extent. 
In this review first examples of nonempirical potentials 
of all three types have been mentioned, but the most 
experience has been accumulated with intermolecular 
potentials. The “potential” approach to ab initio cal- 
culations on complex (nonlocal) structures of solids is 
the direction I consider the most fruitful, particularly 
if it becomes possible to combine an explicit ab initio 
treatment of a small part of a solid (defect, active site, 
the site where the reaction occurs) with a potential for 
its environment consistent with the particular ab initio 
method employed. This is in fact a research program 
pursued with success in molecular biology. 
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